Cambridge Healthtech Institute's 14th Annual

Drug Discovery Chemistry

Optimizing Small Molecules for Tomorrow’s Therapeutics

CONFERENCE PROGRAMS

APRIL 9-10
- Protein-Protein Interactions
- Small Molecules for Cancer Immunotherapy
- Kinase Inhibitor Chemistry
- Fragment-Based Drug Discovery
- Directed Evolution-Based Drug Discovery

APRIL 10-11
- Modulating the Ubiquitin-Proteasome System
- Inflammation Inhibitors
- Macrocycles & Constrained Peptides
- GPCRs & Membrane Proteins

APRIL 12 SYMPOSIA
- AI for Early Drug Discovery
- Lead Optimization for Drug Metabolism
- Blood-Brain Barrier & CNS Drug Discovery
- Biophysical Approaches

Plenary Keynotes:
- Chemical Biology of Proteostasis
 Jack Taunton, PhD, Professor, Department of Cellular and Molecular Pharmacology, University of California San Francisco
- New Ways of Targeting K-Ras
 Frank McCormick, PhD, Professor, HDF Comprehensive Cancer Center, University of California San Francisco

DrugDiscoveryChemistry.com

Save up to $200! Register by February 22
PLENARY KEYNOTES
TUESDAY, APRIL 9TH
4:30-6:00PM
Chemical Biology of Proteostasis
Jack Taunton, PhD, Professor, Department of Cellular and Molecular Pharmacology, University of California San Francisco
Dr. Taunton's research at UCSF focuses on structure-based design of reversible and irreversible covalent inhibitors, as well as mechanistic studies of cyclic peptide natural products. Taunton is a co-founder of Principia BioPharma, Global Blood Therapeutics, Kezar Life Sciences, and Cedilla Therapeutics. Taunton earned his graduate degree in the laboratory of Stuart Schreiber at Harvard University and completed postdoctoral studies in the laboratory of Tim Mitchison at Harvard Medical School. He has been on the faculty at UCSF since 2000 and was a Howard Hughes Medical Investigator from 2008-2015.

New Ways of Targeting K-Ras
Frank McCormick, PhD, Professor, HDF Comprehensive Cancer Center, University of California San Francisco
Prior to joining the UCSF faculty, Dr. McCormick pursued cancer-related work with several Bay Area biotechnology firms: Cetus Corporation Director of Molecular Biology, 1981-1990; Vice President of Research, 1990-1991 and Chiron Corporation, Vice President of Research 1991-1992. In 1992 he founded Onyx Pharmaceuticals and served as its Chief Scientific Officer until 1996. At Onyx, he initiated and led drug discovery efforts that led to the approval of Sorafenib in 2005 for treatment of renal cell cancer, and for liver cancer in 2007. Sorafenib is being tested in multiple indications worldwide. McCormick is the author of over 285 scientific publications and holds 20 issued patents. He also served as President, 2012-2013 for the American Association for Cancer Research (AACR). Since 2013, he has lead the National Cancer Institute’s (NCI) sponsored Ras Initiative at the Frederick National Laboratories for Cancer Research, overseeing the NCI's national effort to develop therapies against Ras-driven cancers.
Short Courses

Morning Short Courses

MONDAY, APRIL 8, 10:00 AM – 1:00 PM

SC1: Covalent Fragments: Applications in Target-Based and Phenotypic Screens
Topics include: design principles of covalent fragment libraries; target-based and phenotypic screens using covalent fragments; strategies to grow fragments into drug leads; case studies of coupling covalent fragment growth with selectivity profiling in cells.
Instructor: Alexander Statsyuk, PhD, Assistant Professor, Department of Pharmacological and Pharmaceutical Sciences, University of Houston

SC2: Trends in Physical Properties of Drugs
Topics include: properties that impact drug efficacy, development, delivery and formulation; including pKa, tautomerism, crystal structure interpretation among others. Use of computational tools.
Instructors: Terry Stouch, PhD, President, R&D, Science for Solutions, LLC; Robert Fraczkiewicz, PhD, Team Leader, Simulations Plus, Inc.; Max Totrov, PhD, Principal Scientist, MoSoft, LLC

SC3: Introduction to GPCR-Based Drug Discovery
Topics include: GPCR pharmacology, including allosteric modulation; biased pharmacology, persistent signaling, and accessory proteins; emerging GPCR screening methods, including cellular redistribution assays; affinity mass spectrometry and biosensors.
Instructor: Annette Gilchrist, PhD, Professor, Department of Pharmacology, Midwestern University

SC4: Strategies for Optimizing Drug Clearance and Drug-Drug Interactions
Topics include: drug metabolism; CYP regulation; the role of bioactivation and how each affects lead optimization; and common assays and methodologies for predicting clearance and drug-drug interactions.
Instructor: Marcel Torrent, PhD, Senior Scientist III, Molecular Modeling, AbbVie

SC5: Ligand-Receptor Molecular Interactions and Drug Design
Topics include: medicinal chemistry drug design principles illustrated via case studies such as interpretation of atomic-level protein X-ray and modeled structures of binding model; understanding the relative amounts of potency gain from different interactions; and case studies to illustrate all the design strategies.
Instructor: Terry Stouch, PhD, President, R&D, Science for Solutions, LLC; Robert Fraczkiewicz, PhD, Team Leader, Simulations Plus, Inc.; Max Totrov, PhD, Principal Scientist, MoSoft, LLC

SC6: Methodologies for Optimizing Drug Clearance and Drug-Drug Interactions
Topics include: drug metabolism; CYP regulation; the role of bioactivation and how each affects lead optimization; and common assays and methodologies for predicting clearance and drug-drug interactions.
Instructor: Marcel Torrent, PhD, Senior Scientist III, Molecular Modeling, AbbVie

SC7: Emerging Targets for Cancer Immunotherapy
Topics include: recently published data on immunology (STING, RIG-1), epigenetic (HDAC, HAT), ubiquitin (DUBs, ligases) and autophagy targets; resulting strategies for development of new standalone or combination therapies for many types of cancers.
Instructors: Wayne W. Hancock, MD, PhD, Professor of Pathology and Chief of Transplant Immunology, Children's Hospital of Philadelphia and University of Pennsylvania; Aditya Murthy, PhD, Scientist, Cancer Immunology, Genentech, Inc.

SC8: Advancing Tools and Technologies for Fragment-Based Design
Topics include: pros and cons of fragment-based approaches; what makes a good fragment; properties of a good fragment library; finding, validating and characterizing low affinity ligands; the importance of using orthogonal screening methods; and what to do with a fragment – growing, linking, and more.
Instructors: Daniel A. Erlanson, PhD, Co-Founder, Carmot Therapeutics, Inc.

SC9: Covalent Fragments: Applications in Target-Based and Phenotypic Screens
Topics include: design principles of covalent fragment libraries; target-based and phenotypic screens using covalent fragments; strategies to grow fragments into drug leads; case studies of coupling covalent fragment growth with selectivity profiling in cells.
Instructor: Alexander Statsyuk, PhD, Assistant Professor, Department of Pharmacological and Pharmaceutical Sciences, University of Houston

SC10: Diversity-Oriented Platforms for Ligand Discovery: Focusing on DNA-Encoded Libraries
Topics include: pros and cons of using DNA-encoded libraries (DEL); overview of different DEL formats, “Split and pool” DNA recorded library synthesis strategy, purpose of different encoding steps in the DEL process; designing toward hits with the desired affinity, selectivity, and mechanism of action, data analysis and the decision-making for which chemotypes to prosecute
Instructors: Svetlana Belyanskaya, PhD, Encoded Library Technologies, R&D Platform Technology & Science, GSK Boston; Ghotas Evindar, PhD, Head, Post-Selection Chemistry Group, Encoded Library Technologies, R&D Platform Technology & Science, GSK

SC11: Targeted Protein Degradation Using PROTACs and Molecular Glues
Topics include: basic understanding of protein-targeting chimeric molecules (PROTACs); applying PROTACs to target and degrade specific proteins of interest; case studies from instructors’ research.
Instructors: Lara Gechjian, PhD, Scientist/Project Lead, Jnana Therapeutics; Former Graduate Student, Laboratory of Drs. James Bradner/Nathanael Gray, Harvard Medical School; Eric Fischer, PhD, Assistant Professor, Cancer Biology, Dana-Farber Cancer Institute/Harvard Medical School; Alexander Statsyuk, PhD, Assistant Professor, Department of Pharmacological and Pharmaceutical Sciences, University of Houston

SC12: Biochemistry and Pharmacology of the Ubiquitin-Proteasome System
Topics include: review of the immune system’s cellular players; review of the inflammatory process; autoimmune and inflammation-related diseases; current treatment landscape; promising drug targets; and principles in immunology (e.g., checkpoint blockade).
Instructor: Alexander Statsyuk, PhD, Assistant Professor, Department of Pharmacological and Pharmaceutical Sciences, University of Houston

SC13: Diversity-Oriented Platforms for Ligand Discovery: Focusing on DNA-Encoded Libraries
Topics include: pros and cons of using DNA-encoded libraries (DEL); overview of different DEL formats, “Split and pool” DNA recorded library synthesis strategy, purpose of different encoding steps in the DEL process; designing toward hits with the desired affinity, selectivity, and mechanism of action, data analysis and the decision-making for which chemotypes to prosecute
Instructors: Svetlana Belyanskaya, PhD, Encoded Library Technologies, R&D Platform Technology & Science, GSK Boston; Ghotas Evindar, PhD, Head, Post-Selection Chemistry Group, Encoded Library Technologies, R&D Platform Technology & Science, GSK

SC14: Immunology Basics for Chemists
Topics include: review of the immune system’s cellular players; review of the inflammatory process; autoimmune and inflammation-related diseases; current treatment landscape; promising drug targets; and principles in immunology (e.g., checkpoint blockade).
Instructors: Lara Gechjian, PhD, Scientist/Project Lead, Jnana Therapeutics; Former Graduate Student, Laboratory of Drs. James Bradner/Nathanael Gray, Harvard Medical School; Eric Fischer, PhD, Assistant Professor, Cancer Biology, Dana-Farber Cancer Institute/Harvard Medical School; Alexander Statsyuk, PhD, Assistant Professor, Department of Pharmacological and Pharmaceutical Sciences, University of Houston

SC15: Macrocyclic Compounds for Drug Discovery: Opportunities, Challenges and Strategies
Topics include: unique characteristics of macrocycles; factors affecting cell permeability and PK/ADME properties; synthetic strategies for macrocyclic compound libraries and macrocyclization challenges; and drug discovery and development examples.
Instructors: Eric Marsault, PhD, Professor, Medicinal Chemistry and Pharmacology, University of Sherbrooke; Mark Peterson, PhD, COO, Cyclesin Pharma, Inc.

SC16: GPCR Structure-Based Drug Discovery
Topics include: methodologies for the characterization and crystallization of GPCRs; a review of X-ray crystallographic and cryoEM GPCR structures and their lessons; biophysical tools (NMR, fluorescence spectroscopy, EPR, SPR, and computational approaches) for observing function-related conformational dynamics of GPCRs; implications of structural knowledge on drug discovery especially related to allosteric modulation by small molecules, ions, and engineered partner proteins.
Instructors: Matthew Eddy, PhD, Assistant Professor, Chemistry, University of Florida

Dinner Short Courses

MONDAY, APRIL 8, 6:00 – 9:00 PM

SC17: Emerging Targets for Cancer Immunotherapy
Topics include: recently published data on immunology (STING, RIG-1), epigenetic (HDAC, HAT), ubiquitin (DUBs, ligases) and autophagy targets; resulting strategies for development of new standalone or combination therapies for many types of cancers.
Instructors: Wayne W. Hancock, MD, PhD, Professor of Pathology and Chief of Transplant Immunology, Children's Hospital of Philadelphia and University of Pennsylvania; Aditya Murthy, PhD, Scientist, Cancer Immunology, Genentech, Inc.; Additional Instructors to be Announced

SC18: Biochemistry and Pharmacology of the Ubiquitin-Proteasome System
Topics include: review of the immune system’s cellular players; review of the inflammatory process; autoimmune and inflammation-related diseases; current treatment landscape; promising drug targets; and principles in immunology (e.g., checkpoint blockade).
Instructor: Alexander Statsyuk, PhD, Assistant Professor, Department of Pharmacological and Pharmaceutical Sciences, University of Houston

SC19: Macrocyclic Compounds for Drug Discovery: Opportunities, Challenges and Strategies
Topics include: unique characteristics of macrocycles; factors affecting cell permeability and PK/ADME properties; synthetic strategies for macrocyclic compound libraries and macrocyclization challenges; and drug discovery and development examples.
Instructors: Eric Marsault, PhD, Professor, Medicinal Chemistry and Pharmacology, University of Sherbrooke; Mark Peterson, PhD, COO, Cyclesin Pharma, Inc.

SC20: GPCR Structure-Based Drug Discovery
Topics include: methodologies for the characterization and crystallization of GPCRs; a review of X-ray crystallographic and cryoEM GPCR structures and their lessons; biophysical tools (NMR, fluorescence spectroscopy, EPR, SPR, and computational approaches) for observing function-related conformational dynamics of GPCRs; implications of structural knowledge on drug discovery especially related to allosteric modulation by small molecules, ions, and engineered partner proteins.
Instructors: Matthew Eddy, PhD, Assistant Professor, Chemistry, University of Florida

Additional Instructors to be Announced

Separate registration required
Specific E3 ligase-Substrate Interactions of the BCL2 Family

8:40 Discovery of AZD5991, a Potent and Selective Macrocyclic MCL1 Inhibitor for Treatment of Cancer
Scott Mlynarski, PhD, Senior Scientist, Oncology Chemistry, IMED Biotech Unit, AstraZeneca

9:10 Sponsored Presentation (Opportunity Available)

9:40 Networking Coffee Break

10:05 AMG176, a Selective MCL-1 Targeted Drug Candidate
Paul E. Hughes, PhD, Principal Scientist, Oncology Research, Amgen

10:35 Structure-Based Discovery of Selective and Potent Inhibitors of the BCL2 Family
Andras Kotschy, PhD, Director, Oncology, Servier Research Institute

11:05 Prospective Discovery of Small Molecule Enhancers of Specific E3 ligase-Substrate Interactions
Kyle Simonetta, Ph.D., Senior Scientist, Lead Discovery, Nurix Therapeutics, Inc.

11:35 LUNCHEON PRESENTATION: Evolution of Contract Research Organizations to Contract Innovation Organizations?
Sponsored by

12:20 pm Session Break

PROTEIN-NUCLEIC ACID COMPLEXES AS DRUG TARGETS

1:15 Chairperson’s Remarks
Justin Ernst, PhD, Director, Chemistry, Effector Therapeutics

1:20 Targeting RNA: Discovery of Risdiplam; a Selective SMN2 Gene Splicing Modulator for the Treatment of Spinal Muscular Atrophy
Hasane Ratni, PhD, Expert Scientist, Medicinal Chemistry, F. Hoffmann-La Roche, Basel, Switzerland

1:50 Gene Signature Screen (GSS) to Identify Novel Modulators of a Transcriptional Factor
Seong Joo Koo, PhD, Senior Scientist, Lead Discovery, Janssen Pharmaceuticals NV
Gene Signature Screening (GSS) is an emerging multiparametric approach to identify disease-associated pathway modulators. We evaluated the potential of GSS to identify novel small molecule inhibitors of a transcription factor by screening 57,000 compounds using a 22-gene signature. Our results show that GSS can identify novel and known inhibitors, demonstrating that GSS can be used to discover inhibitors of transcription factors that are traditionally considered as “undruggable targets.”

2:20 Small-Molecule Covalent TEAD•Yap Antagonists
Samy Meroueh, PhD, Associate Professor, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine

2:50 Novel PPI Inhibitors Targeting the Centrosome to Fight Cancer
Kamyar Hadian, PhD, Group Leader, Helmholtz Zentrum Muenchen
Centrosome amplification is a hallmark of human cancers that can trigger cancer cell invasion. To survive, cancer cells cluster amplified extra centrosomes and achieve pseudo-bipolar division. Here, we set out to prevent clustering of extra centrosomes by identifying novel small molecules that target the Tubulin-CPAP protein-protein interaction. Biochemical, cell-based and in vivo validation demonstrate a global approach to target various cancers including drug-resistant cancers exhibiting high incidence of centrosome amplification.
Intrinsically Disordered Region of Androgen Receptor with Poster Viewing

constitutively active splice variants of AR that lack its ligand-binding domain. Thus prostate cancer. Resistance to therapies targeting AR is mediated by expression of the use of tools in the context of drug metabolism will be explored. In vitro assays used to access metabolic clearance and medicinal chemistry strategies for modifying structures to overcome metabolism dependent clearance during lead-optimization will be discussed. The topic of drug toxicity will be discussed in the context of drugs that are toxic through bioactivation to reactive metabolites, examples of drug structure-toxicity relationships and the relevance of idiosyncratic toxicity to the pharmaceutical industry. The role of metabolite identification studies in preclinical and clinical development will be compared and the steps involved in identifying and characterizing structures to overcome metabolism dependent clearance during lead-optimization will be discussed. The topic of drug toxicity will be discussed in the context of drugs that are toxic through bioactivation to reactive metabolites, examples of drug structure-toxicity relationships and the relevance of idiosyncratic toxicity to the pharmaceutical industry. The role of metabolite identification studies in preclinical and clinical development will be compared and the steps involved in identifying and characterizing metabolites by mass spectrometry will be explained. Finally, advances in the use of in silico tools in the context of drug metabolism will be explored. Instructor: John C.L. Erve, PhD, DABT, President, Jerve Scientific Consulting, Inc.

APRIL 10TH & 11TH (Wed. afternoon-Thurs.)

TS1: INTRODUCTION TO SMALL MOLECULE DRUG METABOLISM AND APPLICATIONS TO DISCOVERY AND DEVELOPMENT

This 1.5-day lecture-based interactive seminar, which focuses on small molecule drug metabolism, will begin with a historical background to the origin of the field before reviewing the well-recognized and more recently discovered drug metabolism pathways. In vitro assays used to access metabolic clearance and medicinal chemistry strategies for modifying structures to overcome metabolism dependent clearance during lead-optimization will be discussed. The topic of drug toxicity will be discussed in the context of drugs that are toxic through bioactivation to reactive metabolites, examples of drug structure-toxicity relationships and the relevance of idiosyncratic toxicity to the pharmaceutical industry. The role of metabolite identification studies in preclinical and clinical development will be compared and the steps involved in identifying and characterizing metabolites by mass spectrometry will be explained. Finally, advances in the use of in silico tools in the context of drug metabolism will be explored. Instructor: John C.L. Erve, PhD, DABT, President, Jerve Scientific Consulting, Inc.

6:00 Welcome Reception in the Exhibit Hall with Poster Viewing

7:00 Close of Day

WEDNESDAY, APRIL 10

7:30 am Continental Breakfast Breakout Discussions

See website for details.

INNOVATIONS FOR TARGETING OF PPIs

8:30 Chairperson's Remarks

Samantha J. Allen, PhD, Principal Scientist, Screening, Janssen R&D LLC

8:35 Cereblon Neosubstrate Degradation in Efficacy and Teratogenicity

Philip Chamberlain, DPhil, Senior Director, Structural and Chemical Biology, Celgene

Cereblon modulators are a class of small molecules, including the approved drugs lenalidomide and pomalidomide, that are capable of inducing degradation of target proteins. Cereblon modulators function by scaffolding a protein-protein interaction between cereblon and target proteins resulting in their ubiquitination and proteasomal degradation. A structural understanding has provided a rationale for the mechanism of action, and is enabling the discovery of new substrates and therapeutic mechanisms.

9:05 Discovery and Clinical Development of Drugs Targeting the Intrinsically Disordered Region of Androgen Receptor

Marianne Sadar, PhD, Professor, Pathology and Genome Sciences, University of British Columbia/BC Cancer

Androgen receptor (AR) is a transcription factor and validated therapeutic target for prostate cancer. Resistance to therapies targeting AR is mediated by expression of constitutively active splice variants of AR that lack its ligand-binding domain. Thus targeting the intrinsically disordered N-terminal domain of AR is of interest. We report our approach to the discovery and clinical development of small molecule inhibitors of this drug target previously considered to be "un-druggable."

9:35 Coffee Break in the Exhibit Hall with Poster Awards Announced

Poster Awards Sponsored by Domainex

FRAGMENT-BASED LIGAND DISCOVERY AND PPIs

10:30 FEATURED PRESENTATION: Molecular Glues for Protein-Protein Interactions: A Fragment-Based Approach to Stabilize 14-3-3/Client Complexes

Michelle Arkin, PhD, Professor, Department of Pharmaceutical Chemistry, University of California San Francisco

Many proteins have multiple binding partners, potentially inducing different biological effects. Stabilizing such protein-protein interactions offers an opportunity to dial in specificity for both partners, and can be inhibitory, activating, or synthetic. Our team is developing specific stabilizers of 14-3-3/client proteins to evaluate the scope and limitations of these effects. This talk will describe our initial foray in the 14-3-3 stabilization using fragment-based drug discovery approaches.

11:00 Biophysics and Structural Biology Offer a Direct Path to Allosteric Drugs

Gregg Siegal, CEO, ZoBio

Allosteric drugs offer exciting new opportunities. ZoBio's platform of biophysics and structural biology allows us to design campaigns that directly seek allosteric modulators of pharmaceutical targets. I will illustrate this capability using HSP70 as an example. HSP70 is a validated target in both oncology and neurodegeneration and yet, has proven challenging to drug. The process used to develop compounds that are selective for the ADP-bound form and inhibit ATPase activity will be described.

11:30 Fragment Philosophy Used in the Identification of eFT508, an Oral, Potent and Highly Selective Inhibitor of Mitogen-Activated Protein Kinase Interacting Kinase (MNK) 1 and 2

Paul Sprengeler, PhD, Research Fellow, Medicinal Chemistry, eFFECTOR Therapeutics, Inc.

Starting from a handful of fragments and fragment-like molecules, the crystal structure-guided approach, leveraging stereoelectronic interactions, to eFT508, an exquisitely selective, potent dual MNK1/2 inhibitor, will be presented. eFT508 was designed to assess the potential for control of oncogene signaling at the level of mRNA translation and has shown potent in vivo anti-tumor activity in models of DLBCL and solid tumors. It is currently being evaluated in Phase 2 clinical trials in solid tumors and lymphoma.

12:00 pm Close of Conference
3RD ANNUAL

Small Molecules for Cancer Immunotherapy
Design of New Molecules and Combinations for Immuno-Oncology Targets

April 9-10, 2019 | San Diego Convention Center | San Diego, CA

TUESDAY, APRIL 9

7:00 am Registration Open and Morning Coffee

NEW COMPOUNDS FOR SINGLE AND COMBINATION I0 THERAPY

8:00 Welcome Remarks
Tanuja Koppal, PhD, Conference Director, Cambridge Healthtech Institute

8:05 Chairperson's Opening Remarks
Donald Durden, MD, Professor, Pediatrics, University of California, San Diego; Director of Operations, SignalRx Pharmaceuticals

8:10 Modulation of Immune Response with Porcupine Inhibitor RXC004 in Preclinical Cancer Models
Inder Bhamra, PhD, Research Fellow, Medicinal Chemistry, Redx Pharma

RXC004 is a potent and selective Porcupine inhibitor currently undergoing Phase I clinical evaluation in cancer patients. Porcupine is a membrane bound O-acyltransferase responsible for post-translational modification of all Wnt ligands. Porcupine inhibitors are efficacious in preclinical models of Wnt ligand driven cancers. Preclinical models demonstrate that RXC004 has an anti-tumour effect via immuno-stimulatory mechanisms, both as a single agent or in combination with anti-PD1 antibodies.

8:40 Toll-Like Receptor (TLR) 7 and 8 Agonists with Direct Inflammasome Activation
David Ferguson, PhD, Professor, Medicinal Chemistry, University of Minnesota

TLR 7 and 8 agonists are potent modulators of proinflammatory cytokine induction but may also induce regulatory cytokines leading to the upregulation of PD-L1 and activation of MDSCs and Tregs. The benefits of combining sunitinib with and without an anti-PD-L1 antibody and a TLR-based nanovaccine evaluated using in vitro and in vivo models show reductions in MDSCs and Tregs can be afforded through co-administration of sunitinib with vaccination. Gains in antigen specific CD8 T cell responses were also noted by addition of anti-PD-L1 antibodies resulting in improved anti-tumor response of the TLR-based vaccine in vivo.

9:10 Tankyrase Inhibitors: Evidence for Therapeutic Potential in Immuno-Oncology
Luc Van Hjtte, PhD, Senior Vice President, Medicinal Chemistry, Mercarchem

WNT/β-catenin signaling regulates key cellular functions, and aberrant WNT/β-catenin signaling is found in multiple cancers. Recently it has been reported that the WNT/β-catenin pathway also regulates immune cell infiltration in the tumor micro-environment. We have developed unique inhibitors of Tankyrase 1 and 2, regulatory biotargets of the WNT/β-catenin and Hippo signaling pathway, for which we have demonstrated a promising immuno-oncology therapeutic potential in combination with checkpoint inhibitors.

9:40 Networking Coffee Break

10:05 In silico Design of a “First-in-Class” Novel Dual Syk/PI3K Inhibitor to Block the Immunosuppressive Tumor Microenvironment
Donald Durden, MD, Professor, Pediatrics, University of California, San Diego; Director of Operations, SignalRx Pharmaceuticals

10:35 Small-Molecule Therapeutics Targeting Immunosuppressive TIGIT and Adenosine Signaling Pathways
Murali Ramachandra, PhD, CSQ, Aurigene Discovery Technologies Limited

Potential advantages of small molecule agents include oral dosing, greater response rate due to better tumor distribution, potential for simultaneously targeting closely related checkpoint proteins, and possibility of better management of adverse events. After succeeding in identifying agents targeting PD-L1, VISTA, TIM3 and CD47, which are at different stages of development (most advanced CA-170 in Phase II clinical trial), we have now focused our attention in discovering agents targeting newer checkpoint protein such as TIGIT and immunosuppressive adenosine signaling. The talk will cover our approaches and status of these programs.

11:05 Next-Generation Small Molecule Immunotherapeutic RRx-001 in Phase III
Corey A. Carter, MD, President and CEO, EpicentRx, Inc.

Next-generation immunotherapeutic RRx-001 is a first-in-class small molecule in Phase III which modulates the tumor microenvironment, regenerates tumor-associated macrophages and induces an innate and adaptive immune anti-cancer response. RRx-001 lacks the toxicity of previous immunotherapies, has shown activity in multiple cancer indications and has the potential to resensitize and convert tumors from treatment resistant to treatment-sensitive, making it an ideal combination agent for chemotherapy, radiation and immunotherapy.

11:35 Luncheon Presentation (Sponsorship Opportunity Available) or Enjoy Lunch on Your Own

12:00 pm Session Break

MODULATING THE TUMOR MICROENVIRONMENT

1:15 Chairperson’s Remarks
David Ferguson, PhD, Professor, Medicinal Chemistry, University of Minnesota

1:20 “It Takes Guts to Rev Up CARs”: Harnessing the Power of Gut Microbiome to Modulate Responses of Novel Cancer Therapies
Muhammad Bilal Abid, MD, MRCP, Clinician-Scientist, Medical College of Wisconsin

Preclinical and human studies establishing a clear relationship between antigen presentation machinery, gut microbiome diversity, and certain microbial taxa, coupled with preclinical studies highlighting the suppressive role of Tregs on CAR T-cells, postulate that modulating gut microbiota may very well impact responses to CAR T-cells.

1:50 Targeting the CBP/P300 Bromodomain for Immuno-Oncology
Karen Gascoigne, PhD, Scientist, Discovery Oncology, Genentech, Inc.

The histone acetyl-transferases CBP/P300 are critical regulators of gene expression in both tumor and immune cells. We describe a novel CBP/P300 bromodomain inhibitor, and its use to probe the role of the bromodomain in CBP/P300 activity at chromatin and in tumor & immune cell function. CBP/P300 bromodomain inhibition impacts the function of MDSC and Treg cells, and directly impairs tumor growth in vitro and in vivo.

2:20 Targeting the Tumor Microenvironment with TGFβ Inhibitors
Rikke B. Holmgard, PhD, Principal Research Scientist, Oncology Research, Eli Lilly and Company

Inhibiting the immune suppressive effects of TGFβ is an emerging strategy as a way to increase benefit of cancer immunotherapy. We explored the impact of the clinical stage TGFβ pathway inhibitor, galunisertib on antitumor immunity at clinically relevant doses. Our data show strong dose-dependent anti-tumor activity with immunological memory in preclinical
Small Molecules Modality in Immuno-Oncology

Growth in the Tumor Microenvironment

Deprivation Influencing both Immunological Function and Cell

with Poster Viewing

effect in oncology.

the ligase ligand and targeting warhead combine to exert a synergistic

proteins for degradation. The advantages of the PROTAC technology lie in

a novel modality. PROTACs redirect ubiquitin-ligases to target specific

pave the way towards new therapeutics for the treatment of genetically-

defined tumors.

9:20 Presentation to be Announced

9:25 Refreshment Break in the Exhibit Hall

with Poster Viewing

4:30 Welcome Remarks from Lead Conference Director

Anjani Shah, PhD, Senior Conference Director, Cambridge Healthtech Institute

4:35 Plenary Technology Spotlight Presentation

to be announced

5:05 Plenary Keynote Introduction
(Sponsorship Opportunity Available)

5:10 PLENARY KEYNOTE:
Chemical Biology of Proteostasis
Jack Taunton, PhD, Professor, Department of Cellular and Molecular Pharmacology, University of California San Francisco
We have recently discovered several macrocyclic compounds that potently and selectively modulate protein homeostasis. I will discuss our recent efforts to unravel their molecular mechanisms.

6:00 Welcome Reception in the Exhibit Hall with Poster Viewing

7:00 Close of Day

WEDNESDAY, APRIL 10

7:30 am Continental Breakfast Breakout Discussions

See website for details.

EMERGING ROLE OF PROTACs IN ONCOLOGY

8:30 Chairperson's Remarks
Markus Queisser, PhD, Scientific Leader, Protein Degradation DPU, R&D Future Pipelines Discovery, GlaxoSmithKline

8:35 Proteolysis Targeting Chimeric Molecules (PROTACs) as Small Molecule Modality in Immuno-Oncology
Markus Queisser, PhD, Scientific Leader, Protein Degradation DPU, R&D Future Pipelines Discovery, GlaxoSmithKline
Targeted protein degradation using bifunctional small molecules known as proteolysis targeting chimeric molecules (PROTACs) is emerging as a novel modality. PROTACs redirect ubiquitin-ligases to target specific proteins for degradation. The advantages of the PROTAC technology lie in its modular, rationally designed molecules, capable of producing a cellular protein knock-down as demonstrated in both cellular and in vivo with the ligase ligand and targeting warhead combine to exert a synergistic effect in oncology.

9:05 FEATURED PRESENTATION: Empirical & Structure-Based PROTAC Design: Lessons Learned with VHL-Based PROTACs
Peter Ettrnayer, PhD, Scientific Director, Cancer Research, Boehringer Ingelheim RCV GmbH & Co KG
Current PROTAC design is driven by screening exit vectors and linkers until a suitable degrader is identified. We will present an alternative rational PROTAC optimization based on high-resolution ternary complex crystal structures and cooperativity considerations. The case study will exemplify a successful structure driven campaign to degrade targets previously considered undruggable and pave the way towards new therapeutics for the treatment of genetically-defined tumors.

9:35 Coffee Break in the Exhibit Hall with Poster Awards Announced

Poster Awards Sponsored by Domainex

10:30 TIP60 Inhibition and Cancer Therapy
Wayne W. Hancock, MD, PhD, Professor, Pathology and Chief of Transplant Immunology, Children's Hospital of Philadelphia and University of Pennsylvania
Froxp3+ Tregs predominate in the microenvironment of many "hot" tumors where they impair antitumor immunity. There are currently no approved strategies that specifically focus on targeting intratumoral Foxp3+ Tregs. We have found that newly developed conventional and PROTAC forms of Tip60 inhibitors (Tip60i) can impair Treg function and boost antitumor immunity in syngeneic lung tumor models. Given that mouse Tip60 shares 99.6% identity (511 of 513 amino acids) with human Tip60, the relevance of our mechanistic studies in murine models to human disease appears compelling.

11:00 Targeted Protein Degradation for Treatment of Cancer
Michael Plewe, PhD, Vice President, Medicinal Chemistry, Cullgen, Inc.
Targeted protein degradation using bifunctional molecules to remove specific proteins by hijacking the ubiquitin proteasome system has emerged as a novel drug discovery approach. These bifunctional degrader molecules consist of a ligand that binds to the protein targeted for degradation, a linker and a ligand for recruitment of an E3 ligase. We will present case studies for developing degraders for oncology targets such as anaplastic lymphoma kinase (ALK) that could lead to novel therapeutics with minimal toxicity.

11:30 Dual Role of USP7 Inhibitors in Treatment of Malignant Diseases
Tauseef Butt, PhD, CEO, Progenra
USP7 is a multifaceted DUB that mediates immune evasion by promoting aggressive Treg functions in tumor tissue as well as direct tumor growth. Progenra's USP7 inhibitors eradicate experimental tumors in syngeneic models by suppressing regulatory T cells to unleash Teffector anti-tumor responses as well as direct anti-tumor action. USP7 inhibitors have been reported by other pharma companies. However, these molecules have poor therapeutic efficacy as compared to Progenra molecules. Molecular mechanisms that differentiate USP7 inhibitors will be discussed.

12:00 pm Close of Conference
TUESDAY, APRIL 9

7:00 am Registration Open and Morning Coffee

PROTACs, RESEARCH UPDATES & NEXT GENERATION OF KINASES

8:00 Welcome Remarks
Nandini Kashyap, Conference Director, Cambridge Healthtech Institute

8:05 Chairperson’s Opening Remarks
Tim Baffi, Graduate Student, Alexandra Newton’s Lab, Department of Pharmacology, University of California San Diego

8:10 Development of Selective CDK Inhibitors and Degraders
Nicholas Kwiatkowski, PhD, Lead Scientist, Nathanael Gray Lab, Cancer Biology, Dana-Farber Cancer Institute

Cyclin-dependent kinases (CDKs) regulate key pathways that are frequently misregulated in cancer, making them attractive drug targets. However, the high sequence and structural conservation shared by CDK family members make the development of CDK-specific pharmacological agents difficult. We have employed several orthogonal strategies to permit the selective inhibition of distinct CDK family members and interrogation of their biological function in normal and disease states.

8:40 FEATURED PRESENTATION: Targeted Degradation of Bruton’s Tyrosine Kinase (BTK)
Matthew Calabrese, PhD, Senior Principal Scientist and Structural Biology Lab Head, Structural and Molecular Sciences, Pfizer, Inc.

Proteolysis targeting chimeras present an exciting opportunity to modulate proteins in a manner that is independent of enzymatic or signaling activity. Despite this interest, fundamental questions remain regarding the parameters most critical for achieving potency and selectivity. We have employed a series of biochemical and cellular techniques to investigate requirements for efficient knockdown of Bruton’s tyrosine kinase (BTK) and will share the results of this case-study and the lessons learned.

9:10 Structure-Based Predictions of CYP Selectivity, Reactivity, and Regioselectivity
Alain Ajamian, Director, Business Development, Chemical Computing Group

Cytochrome P450 oxidases (CYPs) are heme-containing enzymes responsible for clearing drug molecules through oxidative metabolism. Understanding the interactions between drug molecules and CYPs is critical for evaluating drug efficacy, clearance, toxicity, and drug-drug interactions. Although dozens of crystal structures of the five predominant CYP isoforms have been solved, most of the modeling tools that predict drug-CYP interactions completely neglect this structural information. In this work, both 2D methods and 3D methods are used to predict the isoform selectivity, small molecule reactivity, and regioselectivity of CYPs.

9:40 Networking Coffee Break

10:05 Large Scale Proteomics Approaches to Accelerate Degrader Development for Kinases and Other Challenging Targets in Cancer
Eric S. Fischer, PhD, Assistant Professor, Cancer Biology/Biological Chemistry and Molecular Pharmacology, Dana-Farber Cancer Institute/Harvard Medical School

This presentation will discuss the use of large scale chemical-proteomics approaches to accelerate the development of small molecule degraders as chemical probes and lead candidates. Small molecules capable of inducing protein degradation through recruitment of ubiquitin E3 ligases to target proteins, often referred to as degraders or PROTACs, are a new and promising drug modality. We will discuss general approaches to significantly accelerate the development of novel chemical probes for kinases and other targets in cancer.

ARTIFICIAL INTELLIGENCE IN KINASE INHIBITOR DISCOVERY

10:35 Artificial Intelligence in Kinase Inhibitor Discovery
Istvan J. Enyedy, PhD, Principal Scientist, Biogen

Machine learning in combination with automated inhibitor optimization and statistical analysis may be used to accelerate kinase inhibitor discovery. The performance of a prototype artificial intelligence protocol will be presented.

11:05 Defining the Protein Kinase Conformational Space with Machine Learning
Avin Schlessinger, PhD, Assistant Professor, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai

We have developed a machine-learning algorithm to classify kinase conformations based on structural features of the kinase domain. Our classification scheme captures known kinase conformations and defines an additional conformational state. Next, we present KinaMetrix, a comprehensive publicly accessible web-resource for studying kinase pharmacology and drug discovery. KinaMetrix enables researchers to investigate and visualize the kinase conformational space as well as small molecule substructures that exhibit conformational specificity.

11:35 Luncheon Presentation to be Announced

Sponsored by AssayQuant®

NEW TARGETS & PROMISING CANDIDATES

1:15 Chairperson’s Remarks
Lenka Munoz, PhD, Associate Professor, School of Medical Sciences, Discipline of Pathology, The University of Sydney

1:20 Reversing the Paradigm: Protein Kinase C as a Tumor Suppressor
Tim Baffi, Graduate Student, Alexandra Newton’s Lab, Department of Pharmacology, University of California San Diego

Protein kinase C (PKC) has historically been considered an oncoprotein. However, our analysis of >100 somatic mutations identified in human cancers reveals that most mutations are loss-of-function and none are activating; in contrast, germline mutations that enhance activity are associated with degenerative diseases. Our results reveal that therapeutic strategies should focus on restoring, rather than inhibiting, PKC activity in cancer.

1:50 Discovery of Soft panJAK Inhibitors for Topical Treatment of Inflammatory Skin Diseases
Daniel R. Greve, PhD, Senior Manager, Head of MedChem II, LEO Pharma A/S

The presentation covers our efforts aiming for selective, pan-JAK inhibitor molecules having a pharmacokinetic profile that allows for high local exposure combined with low systemic exposure, driven by high hepatic clearance. The lead compounds are efficacious in our mouse xenograft model of plaque psoriasis, while having promising profile in safety/tox studies.

2:20 Targeting the Nuclear Translocation of MAPKs as a Novel Anti-Inflammatory and Anti-Cancer Therapy
Galia Maik-Rachline, PhD, Associate Staff Scientist, Biological Regulation, The Weizmann Institute of Science

We have identified two novel, distinct, regulated nuclear translocation mechanisms for MAPKs. These mechanisms may represent new therapeutic targets for inflammatory and cancer diseases.
mechanisms for ERK1/2 and JNK/p38, of which we made use of as a promising therapeutic approach. We developed a myristoylated, NTS-derived phosphomimetic peptide (EPE peptide), which blocked ERK1/2 nuclear translocation by inhibiting its interaction with importin7 (Imp7). We also developed additional p38-derived myristoylated peptide, termed PERY peptide that prevented JNK1/2 and p38α/β nuclear translocation by interfering with their binding to either Imp7 or Imp9. Our results in several cancer and inflammatory models support the use of nuclear translocation of MAPKs as a novel drug target for signaling related diseases.

2:50 Non-Kinase Targets of Protein Kinase Inhibitors
Lenka Munoz, PhD, Associate Professor, School of Medical Sciences, Discipline of Pathology, The University of Sydney

Non-kinase targets of kinase inhibitors can contribute to desired activity, side effects or act as silent bystanders. As the correct understanding of drug's mechanism of action is critical for the interpretation and success of preclinical as well as clinical drug development, these discoveries highlight the importance of expanding the pharmacology of kinase inhibitors beyond the kinome. I will present kinase inhibitors for which other than kinase targets have been identified and discuss molecular pharmacology guidelines when using kinase inhibitors.

3:20 Sponsored Presentation (Opportunity Available)

3:35 Refreshment Break in the Exhibit Hall with Poster Viewing

4:30 Welcome Remarks from Lead Conference Director
Anjani Shah, PhD, Senior Conference Director, Cambridge Healthtech Institute

4:35 Plenary Technology Spotlight Presentation to be Announced

5:05 Plenary Keynote Introduction (Sponsorship Opportunity Available)

5:10 PLENARY KEYNOTE: Chemical Biology of Proteostasis
Jack Taunton, PhD, Professor, Department of Cellular and Molecular Pharmacology, University of California San Francisco

We have recently discovered several macrocyclic compounds that potently and selectively modulate protein homeostasis. I will discuss our recent efforts to unravel their molecular mechanisms.

6:00 Welcome Reception in the Exhibit Hall with Poster Viewing

7:00 Close of Day

WEDNESDAY, APRIL 10

7:30 am Continental Breakfast Breakout Discussions
See website for details.

ALLOSTERIC MODULATORS, KINETICS, TARGET OPTIMIZATION FOR KINASES AND PHOSPHATASES

8:30 Chairperson's Remarks
Matthew Calabrese, PhD, Senior Principal Scientist and Structural Biology Lab Head, Pfizer, Inc.

8:35 Binding Kinetics and Thermodynamics to Understand and Enhance Selectivity of Kinase Inhibitors
Prakash Palde, PhD, Principal Scientist, Oncology Research Unit, Pfizer Global R&D, Pfizer, Inc.

Development of kinase inhibitors with outstanding selectivity remains a significant challenge with equilibrium selectivity of inhibitors for different kinases measured in biochemical assays being poorly translated under cellular and in vivo conditions. Measurement of kinetics and thermodynamics of kinase inhibitors provide distinct insights into the molecular determinants of selectivity, thereby facilitating the design of selective kinase inhibitors. The talk will cover these aspects of relevant data on some clinically used kinase inhibitors.

9:05 FEATURED PRESENTATION: Exploring the Hidden World of Non-Canonical Protein Phosphorylations
Tony Hunter, PhD, American Cancer Society Professor, Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies

Phosphorylation of histidine, lysine and arginine, the so-called “hidden phosphoproteome”, is poorly characterized. To address this void, we developed monoclonal antibodies (mAbs) that selectively recognize the 1- and 3-isomers of phosphohistidine (pHis) in proteins in a sequence-independent manner. We have used these mAbs in proteomic studies to identify pHis-containing proteins in cancer cell lines, and developed new protocols for enriching pHis-containing tryptic peptides and identifying sites of His phosphorylation. We have also used these mAbs for immunoblotting and immunostaining to detect and localize pHis proteins in normal and tumor tissues. Studies with these mAbs have allowed us to define a role for elevated His phosphorylation in liver cancer.

9:35 Coffee Break in the Exhibit Hall with Poster Awards Announced
Poster Awards Sponsored by Domainex

10:30 Using Fragment-Based Lead Discovery (FBLD) for Kinase Inhibitor Development
Marc O'Reilly, PhD, Senior Director of Molecular Sciences, Astex Pharmaceuticals

In this talk, I will provide examples of how Astex is exploiting high throughput protein crystallography and fragment-based lead discovery (FBLD) for kinase inhibitor development.

11:30 Recent Experiences with Fragments for Kinases
Roderick Hubbard, DPhil, Professor and Senior Fellow, University of York and Vernalis

Fragments provide valuable tools for probing kinase biology and starting points for lead molecules. I will discuss results from three recently disclosed kinase collaborative projects: DYRK1A, PAK1, LRRK2. For DYRK1A, potent, in vivo active, selective inhibitors probed target biology; for PAK1, design of protein constructs allowed rapid progress to be made in identifying selective leads; for LRRK2 surrogate kinase enabled structure-based design of highly selective, potent, brain penetrant inhibitors.

12:00 pm Close of Conference
From Hits to Leads and Lessons Learned

10:05 The Discovery of Novel Allosteric MEK1 Binders by Fragment-Based Approaches
Paolo Di Fruscia, PhD, Senior Scientist, Structure Biophysics & FBLD, Discovery Sciences, IMED Biotech Unit, AstraZeneca UK
MEK1 has been pursued as a target in AZ for the treatment of COPD. To develop structurally novel MEK1 inhibitors, suitable for inhalation strategies, a combination of virtual, biophysical and X-ray fragment screening technologies were explored. The fragment campaign returned several efficient hits co-binding with ATP in a well-established binding site. A few series were progressed and one elaborated into completely novel sub-μM equities.

10:35 Fragment-Based Drug Discovery Campaigns with Protein Complexes that Mediate Protein-Protein Interactions
Charles Wachtel, PhD, Senior Investigator, Novartis Institutes for Biomedical Research
We performed FBS campaigns with protein complexes from several disease areas and proteins involved in protein degradation. These campaigns present unique challenges; hit validation requires important counter screens to identify binding location and data interpretation can be more challenging than for monomeric targets. Methods used in successful campaigns include combinations of SPR, NMR, DSF, XRC and Biodiesy's second-harmonic generation (SHG) platform. These methods identify and validate the binding of fragments to key functional regions of proteins and in unexpected locations.

11:05 Busted! Recognizing False Positives and False Negatives: Learnings from Comparative Analysis of Fragment Binding using X-Ray Crystallography and NMR
Engi Hassan, MSc, PhD Fellow, Laboratory of Gerhard Klebe, Pharmaceutical Chemistry, Philipps University in Marburg, Germany
X-ray crystallography provides structural information that is crucial for fragment optimization, however there are several criteria that must be met for a successful fragment screening including the production of soakable and well-diffracting crystals. Frequently, reliable cascades of screening methods are applied as pre-screens prior to labor-intensive X-ray crystallography which appears on first sight a beneficial strategy. We have done follow-up studies to investigate whether different screening methods will reveal similar collections of putative binders. The detailed comparative analysis of the findings obtained by the different methods, including which method is less likely to produce false negatives and false positives, will be presented in the talk.

11:35 Luncheon Presentation to be Announced

12:20 pm Session Break

NEW FBDD APPROACHES

1:15 Chairperson's Remarks
Manuel Torrent, PhD, Senior Scientist III, Molecular Modeling, AbbVie

1:20 Pushing the Envelope for Fragment-Based Drug Discovery (FBDD) with ‘MiniFrags’
Marc O'Reilly, DPhil, Senior Director, Molecular Sciences, Astex Pharmaceuticals
This talk will describe how Astex is employing protein crystallography and ultra high concentration, aqueous, MiniFrag ligand soaking to inform early stage drug discovery.

1:50 Fragment Library Design; Quantitative Analysis of Molecular Shape and Functionality
Paul Colbon, PhD, CEO, UK Headquarters, Liverpool ChiroChem, Ltd.
This presentation introduces the development of a new parameter that guides considerations of vector space within the fragment library design process. This quantitative parameter measures the vector space coverage of the key functionalities (e.g., HBD’s, HBAs, lipophilic groups) within a fragment library. Optimally designed libraries achieve the broadest coverage of vector space from the smallest number of compounds.
Fragment screening libraries suffer from low hit rates, in particular against difficult targets like PPIs or proteins interacting with nucleic acids. For the design and assembly of target-focused libraries we developed a very efficient computational screening approach based on evaluation of solvation energies of fragments. By several examples I will illustrate how our approach allows for more efficient exploration of vast chemical space and significantly reduces the costs of early screening efforts, by enriching libraries in potential hits.

BCL6

BCL6 is an oncogenic transcriptional repressor that contributes to the pathology of blood cancers, particularly lymphomas and acute leukemias. Its oncogenic activity relies on the ability to recruit transcriptional co-repressors through its BTB domain. Inhibition of this protein-protein interaction is an attractive therapeutic approach. In this talk, we will present the discovery of nanomolar inhibitors starting from weak binders and particularly highlight the crucial role of water molecules in the binding site.

Solvation Energy-Driven Docking in Library Design: Applications to Fragment-Based and Fragment-Assisted Approaches

Paweł Sledz, PhD, Senior Scientist, Department of Biochemistry, University of Zurich

Fragment-based drug discovery is a powerful technique to identify starting points and lead optimization routes for developing small-molecule inhibitors or agonists of drug targets. However, applying fragment-based drug discovery approaches in the pharmaceutical industry remains challenging. A key hurdle is the lack of sound computational methods to assess fragment feasibility and to aid library design.

Playing with Water: from Weak Binders to Potent Inhibitors of the Oncogenic Transcription Factor BCL6

Sven Hoelder, PhD, Professor, Medicinal Chemistry and New Drug Design, Institute of Cancer Research

Collaborative Drug Discovery, Inc.

Whitney Smith, PhD, Director, Business Development, Collaborative Drug Discovery, Inc.

Unlike traditional informatics that force you to choose between "complete, complicated, and expensive" vs "cheap, easy, and mostly-useless", CDD's Vault and BioAssayExpress affordably deliver comprehensive, secure, easy-to-use, and performant SaaS informatics for discovery teams. We’ll discuss how this works and why it’s necessary in today’s fast-moving and collaboration-heavy research environment.

The Goldilocks Zone for Research Informatics - Next Generation Tools That Support Discovery Organizations of All Sizes

5:20 Welcome Remarks from Lead Conference Director

Anjani Shah, PhD, Senior Conference Director, Cambridge Healthtech Institute

5:30 Plenary Technology Spotlight Presentation to be Announced

5:40 Plenary Keynote Introduction (Sponsorship Opportunity Available)

5:10 PLINARY KEYNOTE:

Chad Bilkis, PhD, Professor, Department of Chemistry, University of Pennsylvania

Protein Interactions: A Fragment-Based Approach to Stabilize the 14-3-3 stabilization using fragment-based drug discovery approaches.

Pawel Sledz, PhD, Senior Scientist, Department of Biochemistry, University of Zurich

Biophysics and Structural Biology offer a Direct Path to Allosteric Drugs

Gregg Siegal, CEO, ZoBio

Allosteric drugs offer exciting new opportunities. ZoBio’s platform of biophysics and structural biology allows us to design campaigns that directly seek allosteric modulators of pharmaceutical targets. I will illustrate this capability using HSP70 as an example. HSP70 is a validated target in both oncology and neurodegeneration and yet, has proven challenging to drug. The process used to develop compounds that are selective for the ADP-bound form and inhibit ATPase activity will be described.

10:30 FEATURED PRESENTATION: Molecular Glues for Protein-Protein Interactions: A Fragment-Based Approach to Stabilize 14-3-3/Client Complexes

Michelle Arkin, PhD, Professor, Department of Pharmaceutical Chemistry, University of California San Francisco

Many proteins have multiple binding partners, potentially inducing different biological effects. Stabilizing such protein-protein interactions offers an opportunity to dial in specificity for both partners, and can be inhibitory, activating, or synthetic. Our team is developing specific stabilizers of 14-3-3/client proteins to evaluate the scope and limitations of these effects. This talk will describe our initial foray into the 14-3-3 stabilization using fragment-based drug discovery approaches.

FRAGMENTS AND PPIs

11:00 Biophysics and Structural Biology offer a Direct Path to Allosteric Drugs

Gregg Siegal, CEO, ZoBio

Allosteric drugs offer exciting new opportunities. ZoBio’s platform of biophysics and structural biology allows us to design campaigns that directly seek allosteric modulators of pharmaceutical targets. I will illustrate this capability using HSP70 as an example. HSP70 is a validated target in both oncology and neurodegeneration and yet, has proven challenging to drug. The process used to develop compounds that are selective for the ADP-bound form and inhibit ATPase activity will be described.

11:30 Fragment Philosophy Used in the Identification of eFT508, an Oral, Potent and Highly Selective Inhibitor of Mitogen-Activated Protein Kinase Interacting Kinase (MNK) 1 and 2

Paul Sprenger, PhD, Research Fellow, Medicinal Chemistry, eFFECtor Therapeutics, Inc.

Starting from a handful of fragments and fragment-like molecules, the crystal structure-guided approach, leveraging stereoelectronic interactions, to eFT508, an exquisitely selective, potent dual MNK1/2 inhibitor, will be presented. eFT508 was designed to assess the potential for control of oncogene signaling at the level of mRNA translation and has shown potent in vivo anti-tumor activity in models of DLBCL and solid tumors. It is currently being evaluated in Phase 2 clinical trials in solid tumors and lymphomas.

FRAGMENT-DERIVED DRUG CANDIDATES PROGRESSING IN THE CLINIC

8:30 Chairperson’s Remarks

9:05 BACE Inhibitor Drug Discovery - From Fragment-Based Hits to Clinical Candidates

Erik J. Hembre, PhD, Research Fellow, Discovery Chemistry Research, Eli Lilly & Co.

Fragment based drug discovery is a powerful technique to identify starting points for difficult to drug targets. A case in point is BACE1, a key enzyme involved in the production of amyloid-beta peptides and the amyloid plaques associated with Alzheimer’s disease. Enabled by a fragment-based approach, we identified a weak but efficient amino-thiazine hit structure that ultimately led to the delivery of three BACE1 clinical candidates, LY2811376, LY2886721, and LY3202626.

9:35 Coffee Break in the Exhibit Hall with Poster Awards Announced

Poster Awards Sponsored by Domainex

FRAGMENTS AND PPIs

10:30 FEATURED PRESENTATION: Molecular Glues for Protein-Protein Interactions: A Fragment-Based Approach to Stabilize 14-3-3/Client Complexes

Michelle Arkin, PhD, Professor, Department of Pharmaceutical Chemistry, University of California San Francisco

Many proteins have multiple binding partners, potentially inducing different biological effects. Stabilizing such protein-protein interactions offers an opportunity to dial in specificity for both partners, and can be inhibitory, activating, or synthetic. Our team is developing specific stabilizers of 14-3-3/client proteins to evaluate the scope and limitations of these effects. This talk will describe our initial foray into the 14-3-3 stabilization using fragment-based drug discovery approaches.

11:00 Biophysics and Structural Biology offer a Direct Path to Allosteric Drugs

Gregg Siegal, CEO, ZoBio

Allosteric drugs offer exciting new opportunities. ZoBio’s platform of biophysics and structural biology allows us to design campaigns that directly seek allosteric modulators of pharmaceutical targets. I will illustrate this capability using HSP70 as an example. HSP70 is a validated target in both oncology and neurodegeneration and yet, has proven challenging to drug. The process used to develop compounds that are selective for the ADP-bound form and inhibit ATPase activity will be described.

11:30 Fragment Philosophy Used in the Identification of eFT508, an Oral, Potent and Highly Selective Inhibitor of Mitogen-Activated Protein Kinase Interacting Kinase (MNK) 1 and 2

Paul Sprenger, PhD, Research Fellow, Medicinal Chemistry, eFFECtor Therapeutics, Inc.

Starting from a handful of fragments and fragment-like molecules, the crystal structure-guided approach, leveraging stereoelectronic interactions, to eFT508, an exquisitely selective, potent dual MNK1/2 inhibitor, will be presented. eFT508 was designed to assess the potential for control of oncogene signaling at the level of mRNA translation and has shown potent in vivo anti-tumor activity in models of DLBCL and solid tumors. It is currently being evaluated in Phase 2 clinical trials in solid tumors and lymphomas.

12:00 pm Close of Conference
Directed Evolution-Based Drug Discovery
DNA Encoded Libraries and Other Diversity Oriented Platforms

April 9-10, 2019 | San Diego Convention Center | San Diego, CA

TUESDAY, APRIL 9

7:00 am Registration Open and Morning Coffee

DIVERSITY-ORIENTED PLATFORMS

8:00 Welcome Remarks
Anjani Shah, PhD, Senior Conference Director, Cambridge Healthtech Institute

8:05 Chairperson’s Opening Remarks
Sepideh Afshar, PhD, Principal Research Scientist, Department of Protein Engineering, Eli Lilly and Company

8:10 FEATURED PRESENTATION: One Bead One Compound Introduction and Innovations: Library against Library Screening
Kit S. Lam, MD, PhD, Distinguished Professor and Chair, Department of Biochemistry and Molecule Medicine, University of California Davis
I start with an overview of the one-bead-one-compound (OBOC) platform which enables rapid creation of chemically encoded high diversity combinatorial synthetic peptide, peptidomimetic, macrocyclic or small molecule libraries on micro-beads. Such libraries can then be efficiently screened for binding against molecular targets such as soluble proteins, phages, bacteria, and live cells. Screening can also be achieved with cell-based assays for cellular functions and signaling. I end by describing a method to greatly increase the diversity of molecular interactions, by using a phage-display protein domain library derived from cancer cells as probes to screen encoded OBOC small molecule libraries.

9:10 Sponsored Presentation (Opportunity Available)

9:40 Networking Coffee Break

10:05 Challenges and Promise of Phage Display for Peptide Mimetics
Sepideh Afshar, PhD, Principal Research Scientist, Department of Protein Engineering, Eli Lilly and Company

10:35 FEATURED PRESENTATION: Unnatural Amino Acids for Exotic Macrocyclic Peptides and Targeting IL6R as a Case Study
Hiroaki Suga, PhD, Professor, Department of Chemistry, School of Science, The University of Tokyo
This talk discusses recent advances in the discovery of bioactive macrocyclic pseudo-natural peptides containing exotic amino acids using a discovery platform, the RaPID system. This system enables for extremely “rapid” affinity-based screening of pseudo-natural peptides against proteins of interest from a library consisting of a trillion different short sequences, usually less than 15 residues. Yet the discovered molecules exhibit remarkable bioactivity, often single digit nM or sub nM of dissociation constants.

11:35 Luncheon Presentation (Sponsorship Opportunity Available) or Enjoy Lunch on Your Own

12:20 pm Session Break

DNA-ENCODED LIBRARIES (DEL)

1:15 Chairperson’s Remarks
Svetlana Belyanskaya, PhD, Encoded Library Technologies, R&D Platform Technology & Science, GSK Boston

1:20 Discovery and Optimization of Potent and Selective TYK2 Pseudokinase Inhibitors through DNA-Encoded Library Technology
Ghotas Evindar, PhD, Head, Drug Design and Selection, Medicinal Science & Technology, GlaxoSmithKline
DNA-encoded chemical library screening is an established platform for identifying hits for therapeutic targets. At GSK the platform is utilized broadly to screen a wide range of therapeutic targets than any other screening methods including HTS. Herein, I will provide an overview of the ELT platform followed by a case study application of the platform to the discovery of a potent and selective class of TYK2 pseudokinase inhibitors. The talk will also describe hit to lead optimization of the chemical series through use of both ELT selection data and an obtained X-ray crystal structure of an early lead molecule.

1:50 Activity-Based DNA-Encoded Libraries Screening Technology
Brian Paegel, PhD, Associate Professor, Department of Chemistry, Department of Molecular Medicine, Scripps Research
Combinatorial DNA-encoded library (DEL) technology surveys vastly larger and more diverse chemical spaces than standard HTS collections, but relies on affinity selection to identify hits. We have developed solid-phase DEL synthesis protocols and engineered microfluidic screening technology for conducting activity-based screens using these DELs. I will describe screening results against several common target enzyme classes as well as in vitro translation as a stepping stone toward cellular screening.

2:20 Employing Photoredox Catalysis for the Synthesis of DNA-Encoded Libraries
Dominik Koelmel, PhD, Senior Scientist, DNA-Encoded Libraries, Pfizer
The development of photoredox catalysis has had a profound impact on the synthetic chemistry community, allowing for the facile preparation of complex compounds from rather simple and readily available starting materials. However, photoredox catalysis has hitherto not been used in the context of DNA-encoded chemistries. Our first proof-of-concept studies have now demonstrated that photoredox catalysis can be a valuable reaction platform for the preparation of DNA-encoded libraries (DELs).

2:50 Panel Discussion: 25 Years of DNA Encoded Libraries: Where are We?
Moderator: Barry Morgan, PhD, CSO, HitGen
Panelists to be Announced

3:35 Refreshment Break in the Exhibit Hall with Poster Viewing

Sponsored by HitGen
Sponsored by Signature Discovery

12 • DrugDiscoveryChemistry.com
4:30 Welcome Remarks from Lead Conference Director
Anjani Shah, PhD, Senior Conference Director, Cambridge Healthtech Institute

4:35 Plenary Technology Spotlight Presentation to be Announced

5:05 Plenary Keynote Introduction (Sponsorship Opportunity Available)

5:10 PLENARY KEYNOTE: Chemical Biology of Proteostasis
Jack Taunton, PhD, Professor, Department of Cellular and Molecular Pharmacology, University of California San Francisco
We have recently discovered several macrocyclic compounds that potently and selectively modulate protein homeostasis. I will discuss our recent efforts to unravel their molecular mechanisms.

6:00 Welcome Reception in the Exhibit Hall with Poster Viewing

7:00 Close of Day

7:30 am Continental Breakfast Breakout Discussions
See website for details.

ENCODED LIBRARY APPROACHES

8:30 Chairperson’s Remarks
Brian Paegel, PhD, Associate Professor, Department of Chemistry, Department of Molecular Medicine, Scripps Research

8:35 Finding the Right Fit: An in vitro Selection Approach for Optimizing Peptide Scaffolds for the Discovery of Peptide Leads
Matt Hartman, PhD, Associate Professor, Chemistry, Masey Cancer Center, Virginia Commonwealth University
Diverse libraries of macrocyclic peptides are a potential storehouse for therapeutic reagents against many different PPI targets. But it is often challenging to predict what the best macrocyclic scaffold would be for a particular target. Using mRNA display, we have generated trillions of cyclic and bicyclic peptides encompassing a variety of topologies. We have then used these libraries to select protein binders. The hits exhibit interesting and unique scaffold preferences.

9:05 Characterization of Specific Naa50 Inhibitors Identified using a DNA Encoded Library: a Lead-Finding Case Study for a Challenging Target
Pei-Pei Kung, PhD, Associate Research Fellow, Medicinal Chemistry, Pfizer San Diego
The catalytic site of Naa50 enzyme is considered difficult to drug because of its large binding site and lower hydrophobicity compared to typical druggable targets. We screened a 22 billion-member DNA-encoded library to identify novel Naa50 inhibitors. This provided several hits that were confirmed to be specific Naa50 binders/inhibitors. Crystal structures of these hits in complex with the Naa50 protein were obtained that helped explain their mechanism of action.

9:35 Coffee Break in the Exhibit Hall with Poster Awards Announced
Poster Awards Sponsored by Domainex

ENCODED LIBRARY APPLICATIONS

10:30 Design and Evolution of Macroyclic Peptide Inhibitors of the Hedgehog Signaling Pathway
Rudi Fasan, PhD, Professor, Department of Chemistry, University of Rochester
The Hedgehog signaling pathway plays a central role during embryonic development and its aberrant activation has been implicated in the development and progression of several human cancers. This talk will describe the design and evolution of macrocyclic peptides capable of inhibiting the Hedgehog pathway by targeting and disrupting the Hedgehog protein/Patched interaction, the most upstream event in the ligand-induced activation of this cell signaling pathway.

11:00 Case Study: Optimization of a DEL Drug Candidate, RIP1K
Heather O’Keefe, PhD, Investigator, Medicinal Science and Technology, GlaxoSmithKline

11:30 DEL for Membrane Proteins: Case Study of a GPCR
Dean G. Brown, PhD, Director, External Chemistry, Hit Discovery, Discovery Sciences, IMED Biotech Unit, AstraZeneca
This talk compares a DNA-encoded library screen to identify antagonists at protease activated receptor (PAR2) with a fragment screen using a stabilized PAR2 GPCR receptor. From these efforts, we identified two lead series of compounds, each of which bind to distinct and previously unknown allosteric sites. These results illustrate the power of integrating stabilized GPCR technologies into established screening paradigms.

12:00 pm Close of Conference

“Great opportunity to share and discuss cutting-edge approaches/aspects in drug discovery.”
— FABRIZIO G., PRINCIPAL SCIENTIST, ASTRAZENECA

TRACK-HOPPING
Attendees at Drug Discovery Chemistry are encouraged to “track-hop” between concurrent sessions: Though you register for a particular conference or symposium, in reality you gain access to all concurrent conferences or symposia. For the best value and to best fit your research needs, register for a Premium Package that gives you access to either: all 9 conferences, 4 symposia, plus 2 short courses over five days of programming OR access to 9 conferences plus 4 short courses over four days of programming.
Modulating the Ubiquitin-Proteasome System

Novel Tools and Compounds to Target DUBs, Ligases and Other Proteins

April 10-11, 2019 | San Diego Convention Center | San Diego, CA

WEDNESDAY, APRIL 10

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:30 pm</td>
<td>Registration Open</td>
</tr>
<tr>
<td>12:45 pm</td>
<td>Dessert Break in the Exhibit Hall with Poster Viewing</td>
</tr>
<tr>
<td>1:30 pm</td>
<td>Welcome Remarks</td>
</tr>
<tr>
<td></td>
<td>Tanuja Koppal, PhD, Conference Director</td>
</tr>
<tr>
<td>1:35 pm</td>
<td>Chairperson’s Opening Remarks</td>
</tr>
<tr>
<td></td>
<td>Eric Fischer, PhD, Assistant Professor, Cancer Biology, Dana-Farber Cancer Institute/Harvard Medical School</td>
</tr>
</tbody>
</table>

1:40 Principles of Small Molecule Mediated Ubiquitin Ligase Targeting

Eric Fischer, PhD, Assistant Professor, Cancer Biology, Dana-Farber Cancer Institute/Harvard Medical School

Small molecules that induce protein degradation through ligase-mediated ubiquitination have shown considerable promise as a new pharmacological modality. Thalidomide and related IMiDs provided the clinical proof of concept, while significant progress has recently been made towards chemically induced targeted protein degradation using heterobifunctional small molecule ligands. I will present recent work towards a better understanding of the molecular principles that govern neo-substrate recruitment and its application to the development of small molecule degraders.

2:10 New Screening Technologies and Chemical Probes Targeting the Ubiquitin System: Inhibitors, Activators, and Degraders

Alexander Statsyuk, PhD, Assistant Professor, Department of Pharmacological and Pharmaceutical Sciences, University of Houston

Two major principles of targeting the ubiquitin system have emerged: direct targeting of the enzymes that control protein ubiquitination and hijacking E3 ligases to induce protein degradation. In this lecture, I will outline novel screening tools and technologies to discover small molecule inhibitors/activators and hijackers for RBR/HECT E3 ligases. I will show how UbFluor technology can be used to identify nanomolar inhibitors of HECT E3 ligases, thus validating UbFluor technology as a tool to discover HECT E3 ligase inhibitors.

2:40 Expanding the Druggable Target Space - Degrading a Multi-Functional Transcriptional Regulator

Lara Gechijian, PhD, Scientist/Project Lead, Jnana Therapeutics; Former Graduate Student, Laboratory of Drs. James Bradner/Nathanael Gray, Harvard Medical School

There has been limited success targeting transcription with small organic molecules because many transcriptional regulators are not amenable to conventional therapeutic approaches, as their ligandable domain may not be functionally relevant in disease. Because potent ligands of the bromodomain of TRIM24 are ineffectual in contexts of TRIM24 genetic dependence, we repurposed the potent ligands of the TRIM24 bromodomain as the TRIM24 targeting-ligand component of heterobifunctional degraders to orchestrate the recruitment of TRIM24 to the E3 ubiquitin ligase machinery.

3:10 Sponsored Presentation (Opportunity Available)

3:40 Refreshment Break in the Exhibit Hall with Poster Viewing

4:30 SPOTLIGHT PRESENTATIONS: Development of Small Molecule Protein Degraders as New Therapeutic Modalities

THURSDAY, APRIL 11

8:00 am Breakfast Presentation (Sponsorship Opportunity Available) or Morning Coffee

8:45 Welcome Remarks from Lead Conference Director

Anjani Shah, PhD, Senior Conference Director, Cambridge Healthtech Institute

8:55 PLENARY KEYNOTE:

New Ways of Targeting K-Ras

Frank McCormick, PhD, Professor, HDF Comprehensive Cancer Center, University of California San Francisco

Efforts to find drugs that bind K-Ras directly have increased recently, enabled by NMR-based fragment screening, disulfide tethering, in silico drug design and biophysical methods such as Second Harmonic Generation (SHG). We will report progress on attacking two sites in the K-Ras protein; cysteine-185 (the site of prenylation), and histidine-95, a residue unique to K-Ras, to develop covalent K-Ras inhibitors, as well as compounds identified by SHG and other methods.

9:45 Coffee Break in the Exhibit Hall with Poster Viewing

UNDERSTANDING AND OPTIMIZING THE USE OF PROTACs

10:40 Chairperson’s Remarks

Peter Dragovich, PhD, Staff Scientist, Discovery Chemistry, Genentech

10:45 FEATURED PRESENTATION: Small Molecule-Induced Protein Degradation with Proteolysis Targeting Chimeric Molecules (PROTACs)

Markus Queisser, PhD, Scientific Leader, Protein Degradation DPU, R&D Future Pipelines Discovery, GlaxoSmithKline

The advantages of the PROTAC technology lie in its modular, rationally designed molecules, capable of producing potent, selective and reversible cellular protein knock-down as demonstrated in both cellular and in vivo. The removal of a disease-causing protein is an attractive therapeutic option. This presentation aims to highlight the potential of PROTACs in drug discovery with a focus on their challenges from our perspective.

11:15 Lessons from Viral Hijacking of Ubiquitin-Mediated Protein Degradation

Yue Xiong, PhD, William R. Kenan Professor of the Biochemistry and
Biophysics, University of North Carolina, Co-Founder, Culgen

Virus has learned the use of ubiquitin-proteasome system to overcome the host cellular defense, which provides us insight into the small molecule design to induce target protein degradation for drug discovery. Understanding ternary structure of viral/e3 complex will enhance the success rate of degraders. Protein-protein interaction between viral protein and e3 ligases may also lead us to the discovery of new e3 ligand.

11:45 Targeting Deubiquitylases (DUBs): Opportunities for Collaborative Drug Discovery
Jason Brown, PhD, Scientific and Business Development Director, Ubiquigen Ltd.

We will discuss Ubiquigen’s deubiquitylase (DUB) enzyme targeting small molecule hit-to-lead platform featuring: Our in-house DUB-targeting computational and medicinal chemistry capability and a comprehensive small molecule assay workflow featuring our widely accessed DUBprofiler™ and REDOXprofiler™ service platforms. The company also has significant capabilities to target other ubiquitin system proteins – including e3 ligases – and is developing a platform to provide PROTAC hit-to-lead SAR support. Commercial access models: Ubiquigen is providing access to its comprehensive capabilities to execute early stage hit-to-lead projects via our Collaborative Drug Discovery programme. Individual services may also be accessed via Fee For Service (FFS) or FTE routes.

12:00 pm Antibody-Mediated Delivery of Protein Degraders
Peter Dragovich, PhD, Staff Scientist, Discovery Chemistry, Genentech

Chimeric Chemical Inducers of Degradation (CIDEs) which effect intracellular degradation of target proteins via E3 ligase-mediated ubiquitination are currently of high interest in medicinal chemistry. However, these entities are relatively large compounds that often possess molecular characteristics which may compromise oral bioavailability, solubility, and/or in vivo pharmacokinetic properties. Accordingly, we explored whether conjugation of CIDEs to monoclonal antibodies using technologies originally developed for cytotoxic payloads might provide alternate delivery options for these novel agents.

12:30 Luncheon Presentation (Sponsorship Opportunity Available) or Enjoy Lunch on Your Own

1:30 Dessert Break in the Exhibit Hall with Poster Awards Announced
Poster Awards Sponsored by Domainex

TARGETING DUBs AND LIGASES

2:15 Chairperson’s Remarks
Domagoj Vucic, PhD, Principal Scientist, Early Discovery Biochemistry, Genentech

2:20 Multiple Therapeutic Actions of USP7 Inhibitors: Impairment of FOXP3+ Treg Function and Direct Effects on Tumor Cell Metabolism and DNA Damage Responses
Wayne W. Hancock, MD, PhD, Professor, Pathology and Chief of Transplant Immunology, Children’s Hospital of Philadelphia and University of Pennsylvania

With relevance to a critical unmet need in immune- oncology, we have shown that USP7 is a key target for therapeutic regulation of Foxp3+ Treg cells through its regulation of Tip60 expression. We now provide evidence of direct effects of Tip60 inhibitors (Tip60i) and USP7 inhibitors (USP7i) on tumor cells, including modulation of tumor cell metabolism and impairment of the DNA damage response (DDR). These dual mechanisms of action provide a compelling rationale for USP7i use in oncology.

2:50 Pharmacological Assessment of Potent, Selective, and Orally Bioavailable USP7 Inhibitors
Dennis Hu, PhD, Senior Scientist, FLX Bio

USP7 is a deubiquitinase (DUB) that has been reported to regulate the levels of multiple proteins with roles in cancer progression and immune response, including MDM2 and FOXP3. Using a structure-based drug design strategy, we have identified reversible USP7 inhibitors that are highly potent in biochemical and cellular assays and are >10,000 fold selective for USP7 over other DUBs. Potent and selective USP7 inhibitors with excellent oral pharmacokinetic properties were used to assess the pharmacologic effects of USP7 inhibition in vitro and in vivo.

3:20 DUBing the Undruggable
Stephanos Ioannidis, PhD, Head, Early Portfolio, FORMA Therapeutics

FORMA Therapeutics deploys multiple drug discovery screening platforms to explore the DUB family (DUBome) and along with DUB scaffold repurposing, automated parallel synthesis and computational/crystallographic insights specific and selective inhibitors within the DUBome have been identified. As part of a fully-integrated R&D strategy, DUB alliances which include FORMA and key collaborative networks have been forged to assist in the interrogation of previous undruggable targets via specific DUB inhibition. In this presentation, FORMA’s novel approach to DUBs and drugging the undruggable will be described.

3:50 Networking Refreshment Break

EMERGING UBIQUITIN TARGETS FOR THERAPEUTIC INTERVENTION

4:20 Engineered Ubiquitin Variants for Inhibition and Activation of the Ubiquitin Proteasome System
Sachdev Sidhu, PhD, Professor, Donnelly Centre and Department of Molecular Genetics, University of Toronto

Despite the central importance of the ubiquitin proteasome system in virtually every biological process, inhibitors for the hundreds of component enzymes are severely limited. We have devised a general strategy for using engineered ubiquitin variants to rapidly develop tight and specific binders for virtually any protein that associates with ubiquitin. This approach has yielded numerous inhibitors, and in some cases activators, for deubiquitinases, E2 enzymes, E3 ligases, and non-catalytic docking modules. These tools have proven valuable for cell biology, structural studies, and drug target validation.

4:50 Conformation, Complexation, and Catalysis in the AAA+ ATPase p97/VCP
Michelle Arkin, PhD, Professor, Department of Pharmaceutical Chemistry, University of California San Francisco

Valosin Containing Protein (VCP, p97) is an AAA+ ATPase involved in several aspects of protein homeostasis, including ER-associated degradation, segregation of proteins from complexes, and membrane remodeling. This spectrum of activities is governed by protein-protein interactions between p97, adaptor proteins, and ubiquitin-processing enzymes. p97 function is furthermore modulated by ATPase activity and conformational changes throughout the protein’s barrel structure. We will compare inhibitors of p97 that act through different mechanisms and consequently modulate different aspects of p97 function.

5:20 Solving a 60-Year Mystery: SALL4 Mediates Teratogenicity as a Thalidomide-Dependent Substrate of Cereblon
Mary Matyskiela, PhD, Principal Scientist, Structural and Chemical Biology, Celgene

Targeted protein degradation through small molecule modulation of cereblon offers vast potential for new therapeutics, but cereblon-binding molecules carry the safety risks of thalidomide, which caused an epidemic of severe birth defects in the 1950s. We identify SALL4 as a thalidomide-dependent cereblon substrate whose degradation phenocopies genetic embryopathies caused by SALL4 mutation. This work expands the scope of cereblon neosubstrates and offers a path towards safer therapeutics through understanding the molecular basis of thalidomide-induced teratogenicity.

5:50 Targeting Ubiquitin Ligases in Inflammatory Diseases
Domagoj Vucic, PhD, Principal Scientist, Early Discovery Biochemistry, Genentech

Disbalance in cellular signaling and cell death lead to unregulated cell death and cytokine production and contribute to numerous inflammatory diseases. RIP2 ubiquitination is critically associated with NOD2 signaling and production of pro-inflammatory cytokines. Selective targeting of RIP2 E3 ligase XIAP or RIP2 kinase inhibition can efficiently block NOD2 signaling and cytokine production. Collectively, our studies define major events regulating cell death and inflammatory signaling and contribute to development of anti-inflammatory and tissue protective treatments.

6:20 Close of Conference
Immunological Models

Regulation of cell death signaling is critical for the maintenance of homeostasis and prevention of disease. Necroptosis, a caspase-independent regulated form of cellular death, is emerging as an important mediator of a number of human pathologies. Activation of necroptotic signaling through TNF receptor, which has prompted the development of small-molecule BTK inhibitors for the treatment of autoimmune conditions. The design strategy of irreversible kinase inhibitors, as well as the extensive modeling and crystallographic support which allowed rapid progress of the program into the clinic, will be disclosed. The culmination of these strategies identified ABBV-105, a selective, covalent inhibitor that is efficacious in a preclinical model for RA.

Considerations in the Generation of Covalent BTK Inhibitors

Bruton tyrosine kinase (BTK) plays a central role in signaling from the B-cell receptor, which has prompted the development of small-molecule BTK inhibitors for the treatment of autoimmune conditions. The design strategy of irreversible kinase inhibitors, as well as the extensive modeling and crystallographic support which allowed rapid progress of the program into the clinic, will be disclosed. The culmination of these strategies identified ABBV-105, a selective, covalent inhibitor that is efficacious in a preclinical model for RA.

Discovery of GS-9876: A Selective SYK Inhibitor for the Treatment of Autoimmune Inflammatory Disorder

SYK is a kinase that is activated in response to B-cell receptor signaling and plays a central role in the regulation of immune cells. A selective SYK inhibitor, GS-9876, was discovered and is currently in clinical development for the treatment of inflammatory disorders.

New Ways of Targeting K-Ras

Efforts to find drugs that bind K-Ras directly have increased recently, enabled by NMR-based fragment screening, di-sulfide tethering, in silico drug design and biophysical methods such as Second Harmonic Generation (SHG). We will report progress on attacking two sites in the K-Ras protein; cysteine-185 (the site of prenylation), and histidine-95, a residue unique to K-Ras, to develop covalent K-Ras inhibitors, as well as compounds identified by SHG and other methods.

Coffee Break in the Exhibit Hall with Poster Viewing

NEW INFLAMMATION TARGETS FOR SMALL MOLECULES

10:40 Chairperson’s Remarks

10:45 Welcome Remarks from Lead Conference Director

10:50 Plenary Keynote Introduction

New Ways of Targeting K-Ras
Frank McCormick, PhD, Professor, HDF Comprehensive Cancer Center, University of California San Francisco

Efforts to find drugs that bind K-Ras directly have increased recently, enabled by NMR-based fragment screening, di-sulfide tethering, in silico drug design and biophysical methods such as Second Harmonic Generation (SHG). We will report progress on attacking two sites in the K-Ras protein; cysteine-185 (the site of prenylation), and histidine-95, a residue unique to K-Ras, to develop covalent K-Ras inhibitors, as well as compounds identified by SHG and other methods.

10:55 PLENARY KEYNOTE:

New Ways of Targeting K-Ras
Frank McCormick, PhD, Professor, HDF Comprehensive Cancer Center, University of California San Francisco

Efforts to find drugs that bind K-Ras directly have increased recently, enabled by NMR-based fragment screening, di-sulfide tethering, in silico drug design and biophysical methods such as Second Harmonic Generation (SHG). We will report progress on attacking two sites in the K-Ras protein; cysteine-185 (the site of prenylation), and histidine-95, a residue unique to K-Ras, to develop covalent K-Ras inhibitors, as well as compounds identified by SHG and other methods.

11:15 Novel Small Molecule E3 Ligase Activators as Anti-Inflammatory Agents
Kumar Suresh, PhD, Senior Director, R&D Biology, Progenra, Inc.

In this talk, I will present for the first time discovery and characterization of a novel small molecule E3 ligase activator that acts as an anti-inflammatory agent.
of novel E3 ligase activators that suppress TH2 and TH17 differentiation and exhibit robust anti-inflammatory properties. Ned4-family E3 ligases, including Itch, negatively regulate inflammatory immune responses by suppressing TH2 and TH17 differentiation and cytokine production. Genetic disruption of Itch leads to the development of multi-system immune disorders and lung inflammation.

11:45 Presentation to be Announced

12:00 pm Targeting TRAF6 E3 Ligase Activity with Small Molecules Combats Chronic Inflammation and Autoimmunity

Kamyar Hadian, PhD, Group Leader, Helmholtz Zentrum München

Constitutive NF-κB signaling represents a hallmark of chronic inflammation and autoimmune diseases. The E3 ligase TRAF6 acts as a key regulator bridging innate immunity, pro-inflammatory cytokines, and antigen receptors to the NF-κB pathway. Here, we present an inhibitor of TRAF6-Ubc13 interaction that reduces TRAF6 activity in vitro and in cells. Importantly, this inhibitor ameliorated inflammation and improved disease outcomes of autoimmune psoriasis and rheumatoid arthritis in preclinical mouse models.

12:30 Luncheon Presentation (Sponsorship Opportunity Available) or Enjoy Lunch on Your Own

1:30 Dessert Break in the Exhibit Hall with Poster Awards Announced

Poster Awards Sponsored by Domainex

1:30 Targeting ROR and Other Nuclear Hormone Receptors: Chemistry Challenges and Beyond

Scott Thacher, PhD, CEO, Orphagen

This presentation will cover the chemistry challenges we've faced targeting nuclear hormone receptor for inflammation and cancer. A sub-theme will be “finding the right indication for druggable nuclear receptors.” I will also discuss our second-in-line program for antagonists to steroidogenic factor-1 (NR5A1).

3:50 Networking Refreshment Break

4:20 Targeting Soluble TNF to Eliminate Chronic Inflammation without Immunosuppression

RJ Tesi, MD, CEO/CMO, Immune Bio

INB03 is a selective inhibitor of soluble TNF that is a potent anti-inflammatory agent that is not immunosuppressive. Current drug development leverages that important biology as part of therapy for cancer, neurodegenerative diseases and NASH. INB03 is significantly different from existing non-selective TNF inhibitors that block both soluble TNF (the BAD TNF) and trans-membrane TNF (the GOOD TNF). This difference makes all of the difference in safety, efficacy and therapeutic opportunity.

5:20 GSNOR Inhibitors for Inflammatory, Auto-Immune, and Oxidative Stress Based Diseases: RA, IBD, and NASH

Matthews O. Bradley, PhD, Chairman, President and Founder, SAJE Pharma, LLC

S-nitrosoglutathione Reductase (GSNOR) regulates nitrosylation signal transduction pathways and is over-expressed in many inflammatory human diseases. We identified, using X-ray crystallography and predictive in vitro assays, inhibitors of GSNOR that are potent, selective, orally bioavailable, and safe. The compounds inhibit oxidants, cytokines, chemokines, and inflammatory cells both in vitro and in vivo. The lead compound, SPL-891.1, is active in models of RA, IBD, and NASH among others.

5:50 Close of Conference
2:40 Synthetic tools that allow one not only to cyclize linear precursors but also to exercise control over conformation-driven cellular permeability are in high demand. This lecture will summarize our ongoing efforts in this area and will highlight key experimental findings obtained in the past few months.

2:50 Heterodetic cyclic peptides (lariat peptides) differ from simple homodetic cyclic peptides by the addition of a tail extending from the cyclic portion. Although lariat peptides comprise a large portion of bioactive cyclic peptide natural products, exploration of permeability in this space has been limited. We recently discovered a simple lariat scaffold based on a natural product, Xentrivalpeptide A, composed entirely of non-N-methylated alpha amino acids. I describe the synthesis and properties of several passively permeable lariat peptides with six H-bond donors and molecular weights greater than 800.

3:10 Examples targeting the p53 and translational initiation (EIF4F) pathways for development of new peptide modalities for protein-protein interactions. This talk will focus on how A*STAR has embraced the revitalization of peptide research and is evolving technologies to enable the discovery and development of new peptide modalities for protein-protein interactions. Examples targeting the p53 and translational initiation (EIF4F) pathways for oncology and multimodal biomarkers for immunology will highlight our recent advances in diversity, screening, design, chemistry and formulation.

4:30 Versatile Bio-Orthogonal Strategies for Synthetic Peptide and Protein Stabilization

Raymond E. Moellering, PhD, Assistant Professor, Department of Chemistry, Institute for Genomics and Systems Biology, University of Chicago

Numerous chemistries have been applied to stabilize specific peptide conformations. Many of these strategies, however, lack the general structural, chemical and environmental compatibility desirable for diverse applications in enforcing bioactive peptide and protein folds. In this talk I will present recent progress on the development and application of novel chemical strategies to stabilize secondary and tertiary peptide conformations for challenging pharmacologic targets.

5:00 A*STAR Peptide Engineering Platform (PEP): Targeting Macrocyclic Modalities for Protein-Protein Interactions

Charlie Johannes, PhD, Principal Scientist II & Head Director, Organic Chemistry, A*STAR

This talk will focus on how A*STAR has embraced the revitalization of peptide research and is evolving technologies to enable the discovery and development of new peptide modalities for protein-protein interactions. Examples targeting the p53 and translational initiation (EIF4F) pathways for oncology and multimodal biomarkers for immunology will highlight our recent advances in diversity, screening, design, chemistry and formulation.

5:30 Breakout Discussions

See website for details.

6:15 Close of Day
MACROCYCLIC MODALITIES INTO THE CLINIC

10:40 Chairperson’s Remarks
Adrian Whitty, PhD, Professor, Biochemistry, Boston University

10:45 Discovery of a Potent and Orally Bioavailable Cyclophilin Inhibitor Derived from the Sanglifehrin Macrocycle
Petr Jansa, PhD, Senior Research Scientist II, Medicinal Chemistry, Gilead Sciences
Our aim was to discover through total synthesis an orally bioavailable, non-immunosuppressive cyclophilin (Cyp) inhibitor with potent anti-hepatitis C virus (HCV) activity that could serve as part of an all oral antiviral combination therapy. An initial lead derived from the sanglifehrin A macrocycle was optimized using structure based design to produce a potent and orally bioavailable inhibitor. The macrocycle ring size was reduced by one atom, and an internal hydrogen bond drove improved permeability and drug-like properties.

11:15 FEATURED PRESENTATION: Third Wave of Macro cyclic Peptide Therapeutics: Benchmarking and Druggable Target Space
Tomi K. Sawyer, PhD, Distinguished Scientist, Peptide Drug Discovery & Innovative Technologies, Merck & Co., Inc.
There have been three major waves of peptide drug discovery -- the first for receptor and extracellular targets, the second for intracellular targets, and now a third that is converging super-diversity (e.g., 106-1012-membered libraries) with both structure-based design and expanding target space. This has inspired new peptide modalities and opportunities to expand druggable target space (e.g., intracellular protein-protein and protein-DNA/RNA interactions). This presentation will highlight progress in the development of new screening tools for peptide permeability for benchmarking macrocyclic α-helical peptide structure-permeability relationships to advance this peptide modality into the clinic.

11:45 Sponsored Presentation (Opportunity Available)

12:00 pm Discovery to Approval: Medicinal Chemistry Retrospective of Lorlatinib, A Macro cyclic ALK Inhibitor for Metastatic and Resistance Non-Small Cell Lung Cancer
Ted. W. Johnson, PhD, Research Fellow, Design Chemistry, Pfizer Oncology
PF-06463922 (lorlatinib), a novel macrocyclic inhibitor of ALK/ROS1, recently received FDA approval for the treatment of ALK/refractory Non-Small Cell Lung Cancer. Lorlatinib exhibits low nanomolar, cell-based inhibitory activity against a panel of clinically-derived ALK kinase-domain mutations and overlapping CNS activity to treat brain metastases. A complete retrospective will be presented with focus on unique lab objectives and safety challenges.

12:30 Luncheon Presentation to be Announced

1:30 Dessert Break in the Exhibit Hall with Poster Awards Announced
Poster Awards Sponsored by Domainex

TARGET MODULATION WITH MACROCYCLES

2:15 Chairperson’s Remarks
Lauren Monovich, PhD, Director, Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Inc.

2:20 Cell-Penetrating Mini-Proteins against B-Catenins
Milenko Cicmil, PhD, Vice President, Translational Biology, FOG Pharma

2:50 Macro cyclic Agonists of the Neurotensin Receptors: Tools to Modulate Receptor Selectivity and Undesired Effects
Eric Marsault, PhD, Professor, Medicinal Chemistry and Pharmacology, University of Sherbrooke
The 13- amino acid peptide neurotensin is the endogenous ligand of the NTS1 and NTS2 receptors. Activation of the neurotensin receptors leads to opioid-independent analgesia yet is associated with hypothermia and hypotension. Based on the C-terminal portion of neurotensin, we implemented macrocyclization with the goal to fine-tune receptor selectivity and increase ligand stability.

3:20 Macrocycles Targeting Intracellular PPIs for Addressing Refractory Oncology Targets
David Spellmeyer, PhD, CSO, Circle Pharma
Circle Pharma deploys a structure-based design/synthetic chemistry platform for macrocycle therapeutic discovery that incorporates prediction of intrinsic cell permeability as a key step in the design workflow. While this platform is target-agnostic, Circle’s internal pipeline is directed to intracellular protein-protein interactions that are key drivers in oncology pathways, including pS3/MDM2/4, MCL1:BH3, cyclinA:cdk2 and beta-catenin:TCF4. Examples of Circle’s development work will be presented.

3:50 Networking Refreshment Break

4:20 Macro cyclic Peptide Triazole Inhibitors as Irreversible HIV-1 Inactivators
Adel Ahmed, PhD, Research Assistant Professor, Biochemistry and Molecular Biology, Drexel University College of Medicine
Through a facile chemical synthesis pathway based on solid phase peptide synthesis, we have developed a class of small cyclic peptides (cPTs) that target the HIV-1 Env gp120 glycoproteins. cPTs have great lipophilicity/hydrophilicity balance and have good aqueous solubility, making them appealing to develop as an orally bioavailable therapeutic. cPTs also have promising pharmacokinetics (PK) in rats with an estimated half-life of > 3 hours. They resist proteolysis by model and serum proteases.

5:00 New Cyclic Peptidomimetics to Combat Bacterial Infections
Brice Felden, PhD, Professor, Bacterial Regulatory RNAs & Medicine, Rennes University
This presentation will describe novel therapies we are developing against Gram positive and negative bacteria. They are based on cyclic peptidomimetics. These new modalities do not trigger resistance in vivo.

5:20 Hydrocarbon-stapled Peptidomimetics Targeting Relaxin-3/ RXFP3 Networks in Eating and CNS Disorders
Subhi Marwari, PhD, Postdoctoral Research Associate, Department of Medicine and Neuroscience, SUNY Upstate Medical University
The “helix-in-groove” mode of the neuropeptide relaxin-3 (H3)-RXFP3 receptor underlies a series of intracellular signalling events and provides a blueprint for molecular mimicry that can drive drug discovery. Investigating a series of stapling approaches and combining with intranasal delivery, we have demonstrated the potential of this system in eating and CNS disorders. A complete perspective from in-silico design to brain uptake capacities using novel multi-specific therapeutic modalities will be presented. This may be the first preclinical demonstration of a macrocyclic or hydrocarbon constrained peptide across the blood-brain barrier.

5:50 Close of Conference
Ligand-Free State

Druggable Target

Implications for Biased Opioid Ligand Design

Targets and Approaches

that is not desirable for traditional GPCR ligand design.

distinct from all other GPCR structures reported to date. Within this unique receptor (FZD4) transmembrane domain (TMD) in the absence of a bound compound for these targets.

With the rapid accumulation of high-resolution crystallographic and cryo-EM data for GPCRs, structure-based virtual ligand screening and rational design are quickly finding their prominent place as mainstream lead discovery and optimization tools. This talk will discuss several recently emerged structural targets for pain, addiction and immune disorders, as well as updates in virtual screening approaches we use to discover new chemotypes as probe compounds for these targets.

3:10 Nanobody-Stabilized Kappa Opioid Receptor Structure and Implications for Biased Opioid Ligand Design

Tao Che, PhD, Postdoctoral Fellow, Bryan Roth Lab, Department of Pharmacology, University of North Carolina Chapel Hill

This presentation will cover the design of biased ligands at the kappa-opioid receptor (KOR) using the crystal structure of KOR as a model.

2:40 CXC Chemokine Receptor 4: Structural Updates on a Druggable Target

Irina Kufareva, PhD, Associate Adjunct Professor, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego

As a key driver of cancer cell migration and metastasis, the CXC chemokine receptor 4 is a target of several drug development programs. CXCR4 shares an endogenous chemokine CXCL12 with the atypical, intrinsically biased receptor ACKR3, but the structural principles of chemokine binding and receptor activation remain unknown. Our work reveals the basis for CXCL12 interaction and activation of CXCR4, and comparison with ACKR3, with potential implications for drug design.

2:10 Nanobody-Stabilized Kappa Opioid Receptor Structure and Implications for Biased Opioid Ligand Design

Vsevolod 'Seva' Katritch, PhD, Assistant Professor, The Bridge Institute, University of Southern California

This presentation will cover the design of biased ligands at the kappa-opioid receptor (KOR) using the crystal structure of KOR as a model.

2:40 CXC Chemokine Receptor 4: Structural Updates on a Druggable Target

Irina Kufareva, PhD, Associate Adjunct Professor, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego

As a key driver of cancer cell migration and metastasis, the CXC chemokine receptor 4 is a target of several drug development programs. CXCR4 shares an endogenous chemokine CXCL12 with the atypical, intrinsically biased receptor ACKR3, but the structural principles of chemokine binding and receptor activation remain unknown. Our work reveals the basis for CXCL12 interaction and activation of CXCR4, and comparison with ACKR3, with potential implications for drug design.

3:10 Sponsored Presentation (Opportunity Available)

3:40 Refreshment Break in the Exhibit Hall with Poster Viewing

3:40 Refreshment Break in the Exhibit Hall with Poster Viewing

4:30 Crystal Structure of the Frizzled 4 Receptor in a Ligand-Free State

Fei Xu, PhD, Assistant Professor, iHuman Institute, Shanghai Tech University

We present the first atomic-resolution structure of the human Frizzled 4 receptor (FZD4) transmembrane domain (TMD) in the absence of a bound ligand. The structure reveals an unusual transmembrane architecture distinct from all other GPCR structures reported to date. Within this unique transmembrane fold is an extremely narrow and highly hydrophilic pocket that is not desirable for traditional GPCR ligand design.
11:15 Discovery of GLPG2451, a Novel Potentiator for the Treatment of Cystic Fibrosis
Steven Van der Plas, PhD, Group Leader, Medicinal Chemistry, Galapagos
Cystic Fibrosis is caused by mutations in the Cystic Fibrosis Transmembrane Regulator (CFTR) gene, resulting in loss of function of the CFTR ion channel. Potentiators are a class of CFTR modulators that allow the effective opening of the CFTR channel by increasing its open probability. I describe the discovery and optimisation of a novel series of potentiators. Additionally, the clinical compound GLPG2451 will be disclosed and its properties will be discussed.

11:45 Sponsored Presentation (Opportunity Available)

12:00 pm Presentation to be Announced

12:30 LUNCHEON PRESENTATION: Stabilization of Native Membrane Protein Targets for Drug Discovery
Anass Jawhari, PhD, CSO, CALIXAR
CALIXAR has developed an innovative detergent/surfactant-based approach for therapeutic membrane protein stabilization. GPCRs, ion channels, transporters can be stabilized without any single mutation, truncation or fusion. We will illustrate that using most recent case studies on targets of high medical relevance for which functional and structural integrity were preserved. This innovative approach represents a serious alternative to classical protein engineering approaches to enable drug discovery (SBDD, FBDD, Antibody Discovery & Vaccine).

1:30 Dessert Break in the Exhibit Hall with Poster Awards Announced
Poster Awards Sponsored by Domainex

GPCR PHARMACOLOGY, KINETICS AND SIGNALING
CHALLENGES FOR CHEMISTS

2:15 Chairperson's Remarks
Dean G. Brown, PhD, Director, External Chemistry, Hit Discovery, Discovery Sciences, IMED Biotech Unit, AstraZeneca

2:20 FEATURED PRESENTATION: One Receptor, Many Partners: How do GPCRs Stimulate Diverse Signaling Proteins?
Ron O. Dror, PhD, Associate Professor, Computer Science, Stanford University
The search for functionally selective or biased ligands that promote GPCR signaling through desired but not undesired pathways represents a major current focus of drug discovery efforts. To enable the rational design of such biased ligands, we are using atomic-level simulations, together with complementary experimental data, to determine how GPCRs cause various intracellular proteins—including arrestins, kinases, and G proteins—to activate and signal.

2:50 The Good, The Bad, and the Confusing: Binding Kinetics at GPCR Targets and Potential Effects on Lead Optimization and Translatability
Brian Murphy, PhD, Senior Principal Scientist, CV and Fibrosis Drug Discovery, Disease Sciences and Biologics, R&D, Bristol-Myers Squibb
Small molecule binding kinetics likely plays an important role in determining both in vitro potency and in vivo efficacy of compounds. For example, compound off-rate may affect the duration of action of compounds in vivo. I will review literature data in support of, and in contradiction to the notion that residence time is a critical factor in compound efficacy in vivo. I will also show examples where in vitro measures of compound affinity and efficacy can be compromised without consideration of compound binding kinetics.

3:20 FEATURED PRESENTATION: GPCRs as Allosteric Sensors linking Hormone Binding to G Protein Activation to Modulation by Small Molecules and Cations
Roger K. Sunahara, PhD, Professor, Pharmacology, University of California San Diego
G protein-coupled receptors (GPCR) are critical conduits that sense and communicate extracellular stimuli. Their diversity and physiological importance thus make them superb therapeutic targets. Recent advances in the structural biology of GPCRs, along with support from pharmacological and biochemical studies, has helped in understanding the mechanism of GPCR activation and also has been informative for structure-based drug design. We will discuss our recent data on receptor allostery and structure-based drug design of subtype-specific GPCR ligands.

3:50 Networking Refreshment Break

TARGETING PAIN OR THE CNS: OPIOID ALTERNATIVES AND BEYOND

4:20 Chemistry and Pharmacology of Mitragyna Speciosa
Susruta Majumdar, PhD, Associate Professor of Pharmacology, Center for Clinical Pharmacology, St. Louis College of Pharmacy/Washington University
Mitragyna Speciosa, also known as Kratom, originates from the leaves of a tropical tree found in South-East Asia. It has been shown to have pain-relieving properties with less withdrawal effects compared to other opioids. I will discuss the chemistry and pharmacology of Mitragyna Speciosa and present evidence for the biased agonism of the compound.

4:50 Development of D3 Dopamine Receptor Selective Bitropic Ligands
Robert Luedtke, PhD, Professor, Department of Pharmacology and Neuroscience, University of North Texas Health Science Center
I will focus on the development of bitropic D3 dopamine receptor selective ligands for the treatment of cocaine abuse. Though D2 and D3 dopamine receptors have a high level of amino acid sequence homology, we have been able to identify compounds with high binding affinity at the D3 dopamine receptor subtype and that possess greater than 100 fold degree of D3 vs. D2 receptor binding selectivity. Our dopamine GPCR subtype selective ligands resulted from collaborations between medicinal chemists, computational chemists and behavioral pharmacologists.

5:20 Structure, Dynamics and Activation of the CGRP Receptor, a Medically Important Class B GPCR
Christopher Reynolds, PhD, Professor, Royal Society Industry Fellow, School of Biological Sciences, University of Essex
Calcitonin gene-related peptide (CGRP) is a widely expressed neuropeptide; antagonists can be used to treat migraine while agonists are cardioprotective. The CGRP receptor is a heterodimer of the calcitonin receptor-like receptor (CLR) class B G-protein-coupled receptor and the type 1 transmembrane domain protein, receptor activity modifying protein (RAMP) 1. I will present dynamics and activation of the CGRP receptor in complex with the CGRP peptide and the Gs-protein heterotramer based on our recent 3.3 Å cryo-electron microscopy structure of the human CGRP receptor, photoaffinity labelling studies, and molecular dynamics simulations. Our results also provide novel insights into the role of RAMPs in the activation of the CGRP receptor.

5:50 Close of Conference
Artificial Intelligence for Early Drug Discovery
How to Best Use AI & Machine Learning for Identifying and Optimizing Compounds and Drug Combinations

April 12, 2019 | Hard Rock Hotel | San Diego, CA

FRIDAY, APRIL 12

7:30 am Registration Open and Morning Coffee

AI FOR DRUG DESIGN

7:55 Welcome and Opening Remarks
Tanuja Koppal, PhD, Conference Director

8:00 Fast Molecular Electrostatic Surfaces Using Artificial Intelligence
Marcel Verdonk, PhD, Senior Director, Computational Chemistry & Informatics, Astex Pharmaceuticals
Electrostatic complementarity between protein and ligand is critically important to obtain optimal affinity. Here, we present a method that uses graph convolutional deep neural network technology to generate near-QM quality molecular electrostatic potential (ESP) surfaces for small molecules in a fraction of a second. We will demonstrate the utility of this approach, alongside methodology we have developed for generating fast QM-trained ESP surfaces for proteins as part of Astex’s fragment-based drug discovery (FBDD) platform.

8:30 Nature-Inspired de novo Drug Design with AI
Gisbert Schneider, PhD, Professor, Computer-Assisted Drug Design, Department of Chemistry and Applied Biosciences, ETH Zurich
Drug discovery is inspired by natural products. We present automated de novo design for generating novel synthesizable compounds by transfer learning from natural product templates. The chemical synthesis and biological testing positively advocate this AI concept for prospective application in medicinal chemistry. This presentation will provide first disclosure of prospective natural product-inspired drug design with AI technology.

9:00 Networking Coffee Break

AI FOR LEAD OPTIMIZATION & MOA STUDIES

9:30 CASE STUDY: The Power of Networks: Network-Driven Drug Discovery (NDD) and New Chemical Entities
Sree Vadlamudi, PhD, Business Development, Programme Manager, e-Therapeutics plc

10:00 CASE STUDY: An Artificial Intelligence Platform for Predicting Voltage Gated Sodium (NaV) Channel Inhibition
Anil Nair, PhD, Vice President, in silico Drug Discovery, Icagen

10:30 CASE STUDY: Combining Systems Biology and AI for Intelligent Drug Design
Auélien Rizk, PhD, CTO, InterAx

11:00 Sponsored Presentation (Opportunity Available)

11:15 Luncheon Presentation (Sponsorship Opportunity Available) or Enjoy Lunch on Your Own

12:00 pm Session Break

AI FOR EARLY DECISION-MAKING

1:00 Chairperson’s Remarks
Ron Alfa, MD, PhD, Vice President, Discovery & Product, Recursion Pharmaceuticals

1:05 Re-Imagining Drug Discovery through AI
Ron Alfa, MD, PhD, Vice President, Discovery & Product, Recursion Pharmaceuticals
Massively expanding and accelerating traditional approaches like phenotypic screening provide a feasible near-term solution to bringing substantial improvements to the efficiency of discovery and development efforts. This talk will detail how Recursion sees the use of AI in drug discovery and will describe some technical strategies to accelerate discovery using AI, including our image-based phenotypic screening platform. The use of deep learning models to build predictive tools for multiple stages in the drug discovery pipeline will be discussed.

1:35 Design of an Artificial Intelligence System for Drug Discovery
Istvan Enyedy, PhD, Principal Scientist, Biogen
Artificial intelligence systems have the potential of accelerating drug discovery by increasing the time scientists spend on designing the candidate for development. Multiple machine learning models can be used for driving multiparameter optimization. The use of statistical analysis of the machine learning models in an AI system provides information about the reliability of the predictions and helps in the decision-making process.

2:05 Presentation to be Announced

2:35 Networking Refreshment Break

AI FOR ADME/DMPK PREDICTIONS

3:05 FEATURED PRESENTATION: A Case Study in Machine Learning: Integrating Metabolism, Toxicity, and Real-World Evidence
S. Joshua Swamidass, MD, PhD, Assistant Professor, Department of Immunology and Pathology, Division of Laboratory and Genomic Medicine, Faculty Lead, Translational Informatics, Institute for Informatics, Washington University
Many medicines become toxic only after bioactivation by metabolizing enzymes, sometimes into chemically reactive species. Idiosyncratic reactions are the most difficult to predict, and often depend on bioactivation. Recent advances in deep learning can model bioactivation pathways with increasing accuracy, and these approaches are giving us deeper understanding of why some drugs become toxic and others do not. At the same time, deep learning can be used to understand drug toxicity as it arises in clinical data and why some patients are affected, but not others.

3:35 Modeling in Drug Metabolism for Drug Design and Development
Hao Sun, PhD, Principal Pharmacokineticist, DMPK, Seattle Genetics
Several categories of modeling approaches have been applied to drug metabolism. The talk will focus on: 1. structure-based molecular modeling with crystal structures of drug metabolizing enzymes for drug design and lead optimization; 2. data mining of high-resolution mass spectrometric data for metabolite identification; 3. pharmacokinetic modeling for preclinical in vivo study design; and 4. PK/PD modeling for dose prediction. These modeling approaches have significantly improved efficiency in drug metabolism-focused drug discovery and development.

Shinji Yamazaki, PhD, Department of Pharmacokinetics, Dynamics and Metabolism, La Jolla Laboratories, Pfizer Worldwide Research and Development
Physiologically-based pharmacokinetic (PBPK) modeling is a powerful tool to quantitatively predict DDIs based on drug-dependent physicochemical and pharmacokinetic parameters with drug-independent physiological parameters. There is growing emphasis in developing PBPK models to assess potential risks on DDIs of new molecular entities. This presentation highlights a quantitative PBPK modeling approach to understand complex DDIs of bosutinib via not only CYP3A-mediated metabolism but also P-glycoprotein-mediated efflux on absorption.

4:35 Close of Conference
BLOOD-BRAIN AND CNS-PENETRANT INHIBITORS AND PLATFORMS FOR DRUG DELIVERY

1:00 Chairperson's Remarks
Yao Yao, PhD, Assistant Professor, Pharmaceutical and Biomedical Sciences, University of Georgia

1:05 The Atypical Regulation of GPCR Induced Inflammation and Vascular Leakage
Neil Grimsey PhD, Assistant Professor, Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens

GPCR induced proinflammatory signaling is key to the breakdown of endothelial barrier integrity. Our work has identified a conserved atypical pathway for the induction of p38 MAPK signaling. Which is induced independently from the classical three-kinase cascade and the activation of MKK3/6. Very little is understood as to how this pathway is regulated. Thus, providing a novel therapeutic target to specifically block proinflammatory GPCR signaling in the vasculature.

1:35 Discovery and Early Clinical Development of LY3202626, a Low-Dose, CNS-Penetrant BACE Inhibitor
Dustin Mergott, Senior Research Advisor, Group Leader, Discovery Chemistry Research & Technologies, Eli Lilly

Cerebral deposition of amyloid-β peptide (Aβ) plays a critical role in Alzheimer's disease (AD) pathogenesis. Owing to its role in the generation of Aβ, the BACE1 enzyme has been a prime target for designing drugs to prevent or treat AD. However, BACE1 has proven to be an exceedingly challenging target for drug discovery, especially due to the requirement for CNS penetration. This presentation will describe the discovery of LY3202626, a low-dose, CNS-penetrant BACE inhibitor capable of reducing CSF Aβ by > 90%.

2:05 Sponsored Presentation (Opportunity Available)

2:35 Networking Refreshment Break

3:05 A Roadmap for PI3Kγ Selectivity Design: Discovery of Orally Bioavailable, CNS-Penetrant PI3Kγ Inhibitors with Potential for the Treatment of Multiple Sclerosis
Philip Collier, PhD, Senior Research Scientist, Medicinal Chemistry, Vertex Pharmaceuticals, Inc.

We describe the evolution of a reported pan-PI3K inhibitor into a family of potent and selective inhibitors. Guided by structural data, our scaffold design strategy resulted in compounds devoid of efflux liabilities. Further optimization led to the discovery of a CNS-penetrant, orally bioavailable compound that showed efficacy in a preclinical model of MS.

3:35 Optimization of a Phenotypic Screening Hit in Yeast and the Identification of a Novel Target with the Potential to Treat Parkinson's Disease
Matthew Lucas, PhD, Senior Director of Chemistry, Medicinal Chemistry, Yumanity Therapeutics

The discovery, design, and phenotype-led optimization of the scaffold that resulted in the discovery of a novel target that plays an important and previously unrecognized role in the neurotoxicity caused by a-synuclein will be described. The a-Synuclein protein is a major driver of Parkinson's disease and related neurodegenerative disorders. Misfolding and aggregation of a-synuclein triggers a cascade of events, ultimately resulting in neurotoxicity.

4:05 A Versatile and Modular Targeted Nanoparticle Platform for Delivery of Combination Therapies to Adult and Pediatric CNS Tumors
Fred Chu-Iai Lam, MD, PhD, Research Scientist, Biology, Koch Institute for Integrative Cancer Research at MIT

We developed transferrin-functionalized nanoparticles (TF-NPs) that can deliver combination therapies across the BBB to CNS tumors. Treatment of GBM mouse models with drug-loaded TF-NPs enhances survival and decreases systemic drug toxicities, demonstrating the potential of this nanoscale platform for treatment of CNS tumors.

4:35 Close of Conference
Lead Optimization for Drug Metabolism & Safety
Tools and Strategies for Predicting, Evaluating and Building Safety Into Drug Design
April 12, 2019 | Hard Rock Hotel | San Diego, CA

FRIDAY, APRIL 12
7:30 am Registration Open and Morning Coffee

OPTIMIZING NEW CHEMICAL SPACE & DRUG MODALITIES

7:55 Welcome and Opening Remarks
Tanuja Koppal, PhD, Conference Director
Ganesh Rajaraman, PhD, MBA, Associate Director, DMPK, Celgene Corporation

8:00 ADME Strategies in Beyond the Rule of Five Space
Ganesh Rajaraman, PhD, MBA, Associate Director, DMPK, Celgene Corporation
As drug discovery is increasingly pushing new frontiers in deep hydrophobic targets, protein-protein interactions, protein degraders with PROTACS, etc., it requires compounds "beyond the rule of five" (bRO5; Lipinski's rule). This poses major challenges with respect to permeability and oral bioavailability. Current in vitro tools are of limited value in predicting in vivo results, making it challenging to come up with a rational SAR strategy to improve on properties. The talk aims at exploring current challenges and attempts at possible solutions.

8:30 A Chemical Toxicologist's Perspective on the Validation and Application of Cutting-Edge in vitro Toxicity Assays for Lead Optimization
Tomoya Yukawa, PhD, Associate Scientific Fellow, Discovery Toxicology, Drug Safety Research & Evaluation, Takeda Pharmaceutical Company
There is a strong focus on the development of new in vitro assays that are predictive of adverse events linked to drug attrition. To leverage these assays for lead optimization, local validation analyses based on target class, mode-of-action and chemotype-similarity are essential to ensure applicability and utility. We present several case studies of validation/application of such assays including a 3D-liver microtissue model, a proximal tubule cell model and a hematopoietic stem cell derived myeloid model.

9:00 Networking Coffee Break

UNDERSTANDING DRUG TRANSPORT & CLEARANCE

9:30 Biotransformation of Antibody Drug Conjugates (ADCs) - Pathways and Enzymes
Donglu Zhang, PhD, Principal Scientist, Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc.
Biotransformation of an ADC involves both hydrolysis of the protein portion and metabolism of payloads in addition to linker metabolism. Examples will be given to demonstrate biotransformation of commonly used peptide and disulfide linkers in which both cleavage and immolation are important. Further biotransformation of payloads could be important as DNA alkylators should be considered as a disposition pathway.

10:00 Modeling and Simulation to Study the Impact of Transporters on Drug Disposition and to Improve in vitro to in vivo Extrapolation (IVIVE)
Priyanka Kulkarni, PhD, Scientist, Pharmacokinetics and Drug Metabolism, Amgen, Inc.
IVIVE of transporter substrates is an industry-wide challenge due to multiple complicating factors. Modeling and simulation tools were used to address such experimentally challenging systems. Compartmental and semi-physiological models were used to assess the impact of uptake transporters on drug distribution and to determine system-independent "true" inhibition parameters of efflux transporters, respectively. Together, these results demonstrate the use of modeling and simulation techniques to improve IVIVE of transporter substrates and inhibitors.

10:30 Success and Challenges in Predicting Transporter Mediated Drug Disposition and Clearance from in vitro to in vivo Extrapolation
Na Li, PhD, Senior Scientist, Pharmacokinetics and Drug Metabolism, Amgen, Inc.

11:00 Sponsored Presentation (Opportunity Available)

11:15 Luncheon Presentation: Drug Metabolism Optimization Strategies in the Ever Evolving World of Drug Discovery
Patrick Barton, PhD, DMPK, Evotec (UK) Ltd
Improving success in drug discovery is a major focus for the industry with toxicity and efficacy remaining the major challenge. The talk will present the use of dose telemetry for assessment of project progress towards an acceptable clinical dose and a tool for use in a multi-parametric approach optimization in the LI/LO phase. This will be in the form of case studies which demonstrate the utility of this method relative to other well document metrics

12:00 pm Session Break

EVALUATING DRUG-DRUG INTERACTIONS

1:00 Chairperson's Remarks
Kari Morrissey, PhD, Scientist, Clinical Pharmacology, Genentech, Inc.

1:05 Understanding Transporter-Mediated DDIs – Regulatory DDI Guidance and Industry Case Studies
Michelle Liao, PhD, Associate Director, Clinical Pharmacology and DMPK, Clovis Oncology
Transporter-mediated clinically relevant drug-drug interactions (DDIs) are widely recognized. Drug regulatory agencies worldwide have issued guidance regarding transporter DDI in (1) evaluation of important drug transporters during preclinical drug development, (2) design of clinical DDI studies, and (3) drug labeling. This presentation will compare this DDI guidance and illustrate these concepts with case studies.

1:35 Determining the Clinical Relevance of DDI Predictions
Kari Morrissey, PhD, Scientist, Clinical Pharmacology, Genentech, Inc.
Interactions between drugs can have serious implications; therefore, it is important to understand the potential for and clinical relevance of DDIs early in drug development. This presentation will provide practical considerations and strategies on (1) incorporating nonclinical DDI predictions into clinical development plans, (2) timing, design and conduct of dedicated DDI studies, (3) interpretation of clinical data to determine the clinical relevance of a DDI and (4) implications of clinically relevant DDIs on product labeling.
AI FOR ADME/DMPK PREDICTIONS

3:05 FEATURED PRESENTATION: A Case Study in Machine Learning: Integrating Metabolism, Toxicity, and Real-World Evidence

S. Joshua Swamidass, MD, PhD, Assistant Professor, Department of Immunology and Pathology, Washington University

Many medicines become toxic only after bioactivation by metabolizing enzymes, sometimes into chemically reactive species. Idiosyncratic reactions are the most difficult to predict, and often depend on bioactivation. Recent advances in deep learning can model bioactivation pathways with increasing accuracy, and these approaches are giving us deeper understanding of why some drugs become toxic and others do not. At the same time, deep learning can be used to understand drug toxicity as it arises in clinical data and why some patients are affected, but not others.

3:35 Modeling in Drug Metabolism for Drug Design and Development

Hao Sun, PhD, Principal Pharmacokineticist, DMPK, Seattle Genetics

Shinji Yamazaki, PhD, Department of Pharmacokinetics, Dynamics and Metabolism, La Jolla Laboratories, Pfizer Worldwide Research and Development

4:35 Close of Conference
By tracking the oscillation amplitude in real-time, the binding kinetics can be obtained.

11:00 Sponsored Presentation (Opportunity Available)

11:15 Luncheon Presentation (Sponsorship Opportunity Available) or Enjoy Lunch on Your Own

12:00 pm Session Break

CRYO ELECTRON-MICROSCOPY

1:00 Chairperson's Remarks
Mela Mulvihill, PhD, Scientist, Biochemical & Cellular Pharmacology, Genentech

1:05 CryoEM Applied to Drug Discovery
Seungil Han, PhD, Associate Research Fellow, Structure Biology & Biophysics, Pfizer Global R&D

1:35 Using Cryo-Electron Microscopy to Explore Endosomal GPCR Signaling
Alex Thomsen, PhD, Assistant Professor, Department of Surgery, Columbia University

We are applying a variety of electron microscopy (EM) and computational methods to obtain high-resolution structural information about the megaplex of a single GPCR that interacts simultaneously with β-arrestin and G protein, and to visualize GPCR signaling on the endosomal surface within living cells.

2:05 Sponsored Presentation (Opportunity Available)

2:35 Networking Refreshment Break

DRUG DISCOVERY APPLICATIONS

3:05 The Critical Role of Biophysical Methods (with a Focus on SPR) in Advancing CDK7 Drug Discovery
Kristin Hamman, MS, Research Investigator, Biochemistry, Syros Pharmaceuticals

Small molecule inhibition of CDK7 has been shown to have anti-proliferative effects on cancer cell lines and antitumor activity in mouse models. We have established methods to measure time-dependent inhibition of CDK7 by covalent compounds, which contributed to selection of a clinical candidate, SY-1365, currently in Phase I trials.

3:35 Structural and Functional Characterization of Phospholipases as a Target for ALS
Jay Chodaparambil, PhD, Research Scientist, Chemical and Molecular Therapeutics, Biogen, Inc.

4:05 NMR and Enthalpy Screening of Combinatorial Libraries to Ligand Discovery
Maurizio Pellecchia, PhD, Professor of Biomedical sciences, UC Riverside, School of Medicine, Riverside, CA

We have recently proposed novel evolution-based ligand discovery approaches, in which the principles of positional scanning combinatorial chemistry and fragment-based drug design are combined with biophysical screening techniques, including NMR- and enthalpy-based strategies, to identify novel ligands from large collections of compounds (10^5-10^6 or larger). I will reiterate the basic principles of the approaches and report several recent applications including tackling challenging drug targets.

4:35 Close of Conference
SPONSORSHIP AND EXHIBIT OPPORTUNITIES

CHI offers comprehensive sponsorship packages which include presentation opportunities, exhibit space, branding and networking with specific prospects. Sponsorship allows you to achieve objectives before, during, and long after the event. Any sponsorship can be customized to meet your company’s needs and budget. Signing on early will allow you to maximize your exposure to qualified decision-makers.

Sponsored Presentations – Available within the Main Agenda!
Showcase your solutions to a guaranteed, targeted audience. Package includes a 15- or 30-minute podium presentation within the scientific agenda, exhibit space, on-site branding, access to cooperative marketing efforts by CHI, and more.

Luncheon Presentations
Opportunity includes a 30-minute podium presentation. Boxed lunches are delivered into the main session room, which guarantees audience attendance and participation. A limited number of presentations are available for sponsorship and they will sell out quickly. Sign on early to secure your talk!

Invitation-Only VIP Dinner/Hospitality Suite
Sponsors will select their top prospects from the conference pre-registration list for an evening of networking at the hotel or choice local venue. CHI will extend the invitations and deliver prospects, helping you to make the most out of this invaluable opportunity. Evening will be customized according to sponsor’s objectives (i.e.: purely social, focus group, reception style, or plated dinner with specific conversation focus).

One-on-One Meetings
Select your top prospects from the pre-conference registration list. CHI will reach out to your prospects and arrange the meeting for you. A minimum number of meetings will be guaranteed, depending on your marketing objectives and needs. A very limited number of these packages will be sold.

EXHIBIT
Exhibitors will enjoy facilitated networking opportunities with 800+ qualified delegates, making it the perfect opportunity to launch a new product, collect feedback, and generate new leads from around the globe. Get noticed as a leader in the industry with an 8’ x 20’ exhibit space. Exhibit space sells quickly, so reserve yours today!

CURRENT SPONSORS & EXHIBITORS AS OF JANUARY 25™, 2019

ACHEMBlock
AMRI
Analyticon Discovery
Apollo Scientific
AssayQuant
Biodesy, Inc.
BioDura
Biosensing Instrument
BioSolvIT
Biotage
BPS Bioscience
Bruker BioSpin
Calixar
CFM Oskar Tropitzsch
ChemBridge Corporation
Chemical Computing Group
ChemPartner
Collaborative Drug Discovery
Cresset
Domainex
Enamine LLC
Eurofins Advinus Limited
Eurofins Pharma Discovery Services
Evotec
Frontier Scientific, Inc.
GE Healthcare
HarkerBIO
HitGen Ltd.
horiba
IntelliSyn
Jubilant Biosys
Key Organics
Kishida Chemical Co., Ltd
Liverpool ChiroChem
Mercachem
Mimotopes
OpenEye Scientific
Optibrum
Pelago Biosciences
PharmaBlock
Piramal Pharma Solutions
Prestwick Chemical
Promega
Reaction Biology
RedShift BioAnalytics
SAI Life Sciences
SARomics Biostructures
Simulations Plus
SpiroChem AG
Syngnature Discovery
Synthionx
Tocris, a BIO-TECHNE Brand
Tokyo Chemical Industry Co., Ltd.
Ubiquigent
VeriSIM
Viva Biotech
Watanabe Chemical Industries
ZoBio

Additional Opportunities Available for Sponsorship Include:
• Plenary Keynote Introduction
• Poster Awards SOLD!
• Welcome Reception Sponsor
• Conference Tote Bags
• Badge Lanyards SOLD!
• Hotel Room Keys
• Padfolios
• Program Guide Advertisements
• and more!

For more information, please contact:
Carolyn Cooke | Business Development Manager
c Cooke@healthtech.com | 781-972-5412
Student Fellowships Now Available

Full-time graduate students and PhD candidates presenting a poster are now encouraged to apply for a Student Fellowship. Spaces are limited! Please see website for details.

Hotel & Travel Information

Main Conference Venue:
San Diego Convention Center
111 West Harbor Drive
San Diego, CA 92101

Symposia Venue & Host Hotel:
Hard Rock Hotel
207 Fifth Avenue
San Diego, CA 92101
619-702-3000

Discounted Room Rate:
$259 s/d studio rooms
$279 s/d suites

Discounted Cut-off Date: March 12, 2019

For more reservation information:
Visit the Hotel & Travel page of DrugDiscoveryChemistry.com

Present a Poster and Save $50!

Dedicated poster sessions for Symposia and Conference Programs

Cambridge Healthtech Institute encourages attendees to gain further exposure by presenting their work in the poster sessions. To secure a poster board and inclusion in the conference materials, your abstract must be submitted, approved and your registration paid in full by February 22, 2019. Reasons you should present your research poster at this conference:

• Your poster will be seen by our international delegation, representing leaders from top pharmaceutical, biotech, academic and government institutions
• Receive $50 off your registration
• Your poster will be automatically entered into the main conference poster competition
• Your poster abstract will be published in our conference materials

Present a Poster and Save $50!

2018 Attendee Demographics

Company Type
- Biotech & Pharma 70%
- Academic & Government 22%
- Healthcare 3%
- Services 3%
- Other 2%

Geographic Location
- USA 68%
 - USA Breakdown
 - West Coast 51%
 - East Coast 37%
 - Midwest 12%
- Europe 16%
- Asia 13%
- Rest of World 3%

Delegate Title
- Scientist/Technologist 34%
- Executive & Director 31%
- Sales & Marketing 12%
- Professor 12%
- Manager 6%
- Other 5%

Poster Awards in the Exhibit Hall!

Winners to be Announced:

WEDNESDAY, 9:35 during the Coffee Break and
THURSDAY, 1:30 during the Dessert Break

Sponsored by