It is an exciting time for digital pathology in the US, following on the FDA's 2017 approval of Philips’ IntelliSite Pathology Solution. Attracting experts working in all areas of digital pathology, the conference will examine the latest advancements in digital imaging technology and image analysis techniques like machine learning. There will also be an entire track focused on digital pathology adoption, practicalities and strategies for successful implementation across the workflow.

Highlights of the 2018 meeting include lectures from over 30 experts in the field, as well as several interactive sessions to facilitate collaboration between attendees. Highlights include 9 roundtables, 3 panel discussions and over 7 hours of networking time. To complement the scientific content, there will be a dynamic exhibition room filled with technology providers showcasing their technologies and solutions.

EVENT SUMMARY

- 30+ presentations from industry and academic leaders
- 7+ hours of dedicated networking time
- 3 extended senior-level panel discussions
- 9 interactive roundtable discussions
- A buzzing exhibition hall featuring all technology and solution providers in the field
- Poster presentations and competition

EXPERT SPEAKERS Include:

- **ANANT MADABHUSHI**
 F. Alex Nason Professor II, Department of Biomedical Engineering; Director, Center for Computational Imaging & Personalized Diagnostics, Case Western Reserve University

- **ULYSSES BALIS**
 Professor of Pathology, Director, Division of Pathology Informatics & Computational Pathology Laboratory Section, Michigan Medicine, University of Michigan

- **GEORGE LEE**
 Digital Pathology Informatics Lead / Data Scientist, Translational Medicine, Bristol-Myers Squibb

- **YUKAKO YAGI**
 Director of Pathology Digital Imaging, Department of Pathology, Memorial Sloan Kettering Cancer Center; Director of Digital Imaging Laboratory, The Warren Alpert Foundation Center for Digital and Computational Pathology at MSK
CONFERENCE SYNOPSIS

ROUNDABLES SESSION 1

COMPUTATIONAL PATHOLOGY & AI
- Overcoming challenges in image analysis
- New imaging modalities
- User interfaces
- Acquisition, processing, archiving & retrieval of WSI
- Cloud computing, data storage and management
- Integration with LIMS / LIS; PACS
- Scoring & annotation tools
- Fully-automated image analysis
- Deep learning pattern recognition
- Case studies & applications in pre-clinical research and in the clinic
 - **Panel:** The potential for digital pathology & AI
 - **Panel:** How do we move digital pathology forward?

IMPLEMENTATION & PRACTICALITIES
- Regulation
- Barriers to adoption
- Making the business case for digital pathology – developing an RFP
- How readers interact with digital pathology systems
- Challenge of form factors
- Interoperability
- Improving WSI workflow efficiency
- Telepathology & international consultations
 - **Panel:** Biggest challenges in day-to-day use of digital pathology

Roundtables are informal, small-group interactive discussions on key topics in the field. Discussion leaders will introduce sub-topics/questions for discussion and roundtable attendees are encouraged to participate actively in the session.

ROUNDABLES SESSION 1

Roundtable 1: Clinical Utility of AI for Differential Diagnosis
Roundtable 2: LIMS/LIS & PACS
Roundtable 3: Use of digital pathology to support personalized oncology
Roundtable 4: Digital Pathology in Pharma

ROUNDABLES SESSION 2

Roundtable 1: Integration of Digital Pathology Across the Workflow
Roundtable 2: Standardization
Roundtable 3: Novel Deep Learning Applications
Roundtable 4: Regulation of Digital Pathology
<table>
<thead>
<tr>
<th>Confirmed Speakers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANIL PARWANI - Professor of Pathology and Biomedical Informatics, Vice-Chair of Anatomic Pathology, Wexner Medical Center, The Ohio State University</td>
</tr>
<tr>
<td>THOMAS FUCHS - Associate Professor, Computational Pathology, Memorial Sloan Kettering Cancer Center; Weill Cornell Medicine</td>
</tr>
<tr>
<td>DAVID WEST - CEO, Proscia</td>
</tr>
<tr>
<td>ULYSSES BALIS - Professor of Pathology, Director, Division of Pathology Informatics & Computational Pathology Laboratory Section, Michigan Medicine, University of Michigan</td>
</tr>
<tr>
<td>DOUGLAS HARTMAN - Associate Professor of Pathology & Associate Director, Pathology Informatics, University of Pittsburgh</td>
</tr>
<tr>
<td>DRAZEN JUKIC - Consultant Dermatopathologist, Georgia Dermatology and Skin Cancer Center</td>
</tr>
<tr>
<td>JOEL SALTZ - Cherith Professor and Founding Chair, Department of Biomedical Informatics, Stony Brook University</td>
</tr>
<tr>
<td>GEORGE LEE - Digital Pathology Informatics Lead / Data Scientist, Translational Medicine, Bristol-Myers Squibb</td>
</tr>
<tr>
<td>ANANT MADABHUSHI - F. Alex Nason Professor II, Department of Biomedical Engineering; Director, Center for Computational Imaging & Personalized Diagnostics, Case Western Reserve University</td>
</tr>
<tr>
<td>YAIR RIVENSON - Postdoctoral Scholar, Ozcan Nano/Bio Photonics Lab, University of California Los Angeles</td>
</tr>
<tr>
<td>JOHN TOMASZEWSKI - SUNY Distinguished Professor, Peter A. Nickerson Professor and Chair, Department of Pathology and Anatomical Science, University at Buffalo</td>
</tr>
<tr>
<td>GUSTAVO KUNDE ROHDE - Associate Professor, Department of Biomedical Engineering, Department of Electrical and Computer Engineering, University of Virginia</td>
</tr>
<tr>
<td>MEHRVASH HAGHIGHI - Assistant Professor of Pathology & Cell Biology, Columbia University Medical Center</td>
</tr>
<tr>
<td>LAURA BARISONI - Professor of Pathology, Division Chief, Renal Pathology Service, Miller School of Medicine, University of Miami</td>
</tr>
<tr>
<td>RAJENDRA SINGH - Associate Professor, Pathology, Icahn School of Medicine at Mt. Sinai</td>
</tr>
<tr>
<td>ERIC WIRCH - Chief Technology Officer and Managing Director, Corista</td>
</tr>
<tr>
<td>STEVEN HART - Assistant Professor of Biomedical Informatics, Mayo Clinic</td>
</tr>
<tr>
<td>SIMON KIRBY (Chair) - Assistant Professor, Departments of Laboratory Medicine and Surgery, Faculty of Medicine, Memorial University of Newfoundland, Canada</td>
</tr>
<tr>
<td>GERARDO FERNANDEZ - Associate Professor, Department of Pathology, Medical Director, Center for Computational and Systems Pathology, Icahn School of Medicine at Mount Sinai & The Mount Sinai Hospital</td>
</tr>
<tr>
<td>MICHAEL SURACE - Scientist, MedImmune</td>
</tr>
<tr>
<td>BEATRICE KNUDSEN - Professor, Biomedical Sciences and Pathology and Laboratory Medicine, Director, Translational Pathology, Cedars Sinai Medical Center</td>
</tr>
<tr>
<td>JASON HIPP - Lead Pathologist, Google Research</td>
</tr>
<tr>
<td>MARTIN STUMPE - Technical Lead Pathology, Google Research</td>
</tr>
<tr>
<td>JENNIFER GILTNANE - Pathologist, Genentech</td>
</tr>
<tr>
<td>YUKAKO YAGI - Director of Pathology Digital Imaging, Department of Pathology, Memorial Sloan Kettering Cancer Center; Director of Digital Imaging Laboratory, The Warren Alpert Foundation Center for Digital and Computational Pathology at MSK</td>
</tr>
<tr>
<td>RICHARD LEVENSON - Professor and Vice Chair for Strategic Technologies, Department of Pathology and Laboratory Medicine, UC Davis Health, Sacramento, CA</td>
</tr>
<tr>
<td>ANTHONY MAGLIOCCO - Chair of Anatomical Pathology, Anatomical Pathology Department, Moffitt Cancer Center</td>
</tr>
<tr>
<td>PETER CAIE - Senior Research Fellow, University of St Andrews, UK</td>
</tr>
<tr>
<td>ANNE HELLEBUST - Product Manager, Life Sciences, Indica Labs</td>
</tr>
<tr>
<td>STANLEY COHEN - Emeritus Chair of Pathology & Founding Director, Center for Biophysical Pathology, Rutgers-NJMS; Adjunct Professor of Pathology, University of Pennsylvania and Jefferson University</td>
</tr>
</tbody>
</table>
Confirmed Speakers

Marilyn Bui
Professor of Pathology, Director of Analytic Microscopy Core, Moffitt Cancer Center

Gary Marcus
Professor of Psychology and Neural Science, New York University

Thomas Westerling-Bui
Senior Scientist, Regional Business Development, Fimmic Oy

Peter Westcott
Postdoctoral Fellow, Laboratory of Tyler Jacks, Massachusetts Institute of Technology

Senior Representative
Leica Biosystems

Workshops Pre-Event

Workshop

Pre-Conference Workshop
Sponsored by:

Indica Labs
Informed Pathology

Monday June 25th 2018
1:30pm-4:00pm
Radisson Martinique on Broadway, 49 West 32nd Street, New York City, NY 10001, USA

HALO and HALO-AI Quantitative Pathology & Informatics Meeting

Presenters representing diverse organizations, including biotech, pharma and academic medical centers across the United States, will discuss how they are using HALO image analysis software and services is used to achieve their research objectives with an emphasis on biomarker analysis in oncology, particularly immuno-oncology. Additionally, there will be presentations from Indica Labs introducing new features in HALO and HALO AI, our new deep learning platform.

To book your place visit:
Day 1 Tuesday June 26th 2018

Keynote Address:

Anil Parwani
Professor of Pathology and Biomedical Informatics, Vice-Chair of Anatomic Pathology, Wexner Medical Center, The Ohio State University
Breaking the barriers: Whole Slide Imaging for Primary Diagnosis and Artificial Imaging Applications
- Overview of whole slide imaging, applications and challenges
- Recognize how artificial intelligence/deep learning is an enabling technology for clinical diagnostics
- New imaging tools for cancer diagnostics

Keynote Address:

Thomas Fuchs
Associate Professor, Computational Pathology, Memorial Sloan Kettering Cancer Center; Weill Cornell Medicine
What Does It Take to Build a Petabyte Scale AI?
- Artificial Intelligence
- Computational Pathology
- Deep Learning
Pathology is in the midst of a revolution from a qualitative to a quantitative discipline. This transformation is fundamentally driven by machine learning in general and computer vision and deep learning in particular. At Memorial Sloan Kettering we are building a computational pathology decision support system based on hundreds of GPUs and one petabyte of image and clinical data. The goal is not only to automate cumbersome and repetitive tasks, but to impact diagnosis and treatment decisions in the clinic.

Sponsored Presentation:

Anne Hellebust
Product Manager, Life Sciences, Indica Labs
HALO AI – Collaborative Deep Learning Platform for Pathology
If you’ve attended any digital pathology or medical imaging meetings over the past couple of years, you have heard artificial intelligence or deep learning mentioned at least once. If you are not a computer scientist, algorithm engineer or image analyst, you might be wondering how these tools differ from all the other image analysis and pattern recognition tools that have been used in digital pathology for years. In this presentation, we will de-mystify this emerging technology with a bit of background, explain its potential applications in pathology and discuss how the HALO-AITM platform is making this powerful technology accessible to the pathology community.

Panel Discussion:

The Potential for Artificial Intelligence in Digital Pathology
Thomas Fuchs
Associate Professor, Computational Pathology, Memorial Sloan Kettering Cancer Center; Weill Cornell Medicine

AI for Image Analysis

Track Chair: Stanley Cohen, Emeritus Chair of Pathology & Founding Director, Center for Biophysical Pathology, Rutgers-NJMS; Adjunct Professor of Pathology, University of Pennsylvania and Jefferson University

Joel Saltz
Cherith Professor and Founding Chair, Department of Biomedical Informatics, Stony Brook University
Whole Slide Imaging and High-End Computing Come Full Circle
Presentation will describe evolution of whole slide imaging Pathology technology from its 1990s HPC origins to the present. I will describe the HPC origin of the early infrastructure developed by my group at Johns Hopkins Pathology – the first whole slide imaging software system – and go on to describe National Cancer Institute supported infrastructure for visualization, management and analysis of information derived from whole slide Pathology images. Finally, I will describe the role of whole slide Pathology Informatics in Precision medicine giving examples of studies that make use of traditional machine learning and deep learning algorithms.

Implementation & Practicalities

Track Chair:

Drazen Jukic
Consultant Dermatopathologist, Georgia Dermatology and Skin Cancer Center
Topic: Telepathology

Panel Discussion:
How do we move digital pathology forward?
A discussion on strategies for advancing digital pathology for clinical use, covering topics such as regulation, practicalities of implementation, identifying hurdles.
<table>
<thead>
<tr>
<th>Time</th>
<th>Speaker</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:45-3:10</td>
<td>JASON HIPP</td>
<td>Lead Pathologist, Google Research</td>
</tr>
<tr>
<td>2:20-2:45</td>
<td>ULYSSES BALIS</td>
<td>Professor of Pathology, Director, Division of Pathology Informatics & Computational Pathology Laboratory Section, Michigan Medicine, University of Michigan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advancing Cancer Diagnostics with Deep Learning</td>
</tr>
<tr>
<td>2:20-3:10</td>
<td>DOUGLAS HARTMAN</td>
<td>Associate Professor of Pathology & Associate Director, Pathology Informatics, University of Pittsburgh</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Determining how to integrate digital pathology into your lab</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Describe various deployment methods</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Outline the infrastructure needed for a deployment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Describe the return on investment</td>
</tr>
<tr>
<td>2:20-3:35</td>
<td>GERARDO FERNANDEZ</td>
<td>Associate Professor, Department of Pathology, Medical Director, Center for Computational and Systems Pathology, Icahn School of Medicine at Mount Sinai & The Mount Sinai Hospital</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Artificial intelligence methods for grading human cancer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Large accurate ground truth training is critical in pathology AI applications</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Review spectrum of applications of automated grading algorithms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Normalizing for tissue variability in automated pathology analysis</td>
</tr>
<tr>
<td>2:20-3:35</td>
<td>PETER CAIE</td>
<td>Senior Research Fellow, University of St Andrews, UK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Automated tumor microenvironment profiling using machine learning</td>
</tr>
<tr>
<td>3:10-3:35</td>
<td>MARILYN BUI</td>
<td>Professor of Pathology, Director of Analytic Microscopy Core, Moffitt Cancer Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maximizing Patient Care Delivery with Digital Pathology: Resource Guide for Practicing Pathologists</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Update of practicing guidelines in whole slide imaging, telepathology and quantitative image analysis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Organized for busy practicing pathologists</td>
</tr>
</tbody>
</table>

For sponsorship opportunities contact Gavin Hambrook / Nick Best at Email: sponsorship@globalengage.co.uk
Tel: +44 (0) 1865 849841
ROUNDTABLE DISCUSSIONS:

Table 1: Clinical Utility of AI for Differential Diagnosis
ULYSSES BALIS
Professor of Pathology, Director, Division of Pathology Informatics & Computational Pathology Laboratory Section, Michigan Medicine, University of Michigan

Table 2: LIMS/LIS & PACS
MEHRVASH HAGHIGHI
Assistant Professor of Pathology & Cell Biology, Columbia University Medical Center
• What are different methods of LIS/WSI implementation? Pros and Cons of each method?
 • Discuss the feasibility of using PACS in integral model
 • Why PACS adoption is important?
 - Workflow support, even for heavier volume
 - Integration in healthcare IT environment
 - Anywhere access because of central storage
 - Offering stability and performance
 - Better patient care
• What are lessons learned from Radiology and their journey to full digitalization?
 - Choose a vendor-neutral solution
 - Ensure system robustness
 - Ensure there are clinical references that testify to good support and vendor relationship
 - Ensure the internal engagement
 - Focus on the workflow
• How do we properly prepare for integrating WSI in pathology lab workflow?
 - LIS operational pre-requisites
 - Implementing additional quality control measure
 - Optimizing the pathology workstations: Challenges and solutions
 - Comprehensive training

Table 3: Use of digital pathology to support personalized oncology
ANTHONY MAGLIocco
Chair of Anatomical Pathology, Anatomical Pathology Department, Moffitt Cancer Center

Table 4: Regulation of Digital Pathology

SPONSORED PRESENTATION:
THOMAS WESTLING-BUI
Senior Scientist, Regional Business Development, Fimmic OY
PETER WESTCOTT
Postdoctoral Fellow, Laboratory of Tyler Jacks, Massachusetts Institute of Technology
Title TBC

SPONSORED PRESENTATION:
RICHARD LEVENSON
Professor and Vice Chair for Strategic Technologies, Department of Pathology and Laboratory Medicine, UC Davis Health, Sacramento, CA
Slide-free, real-time histology: cooler than frozens
A number of technologies for rapid, ex-vivo, slide-free microscopy are in research-and-development phase and a few have already entered the market as research-use-only instruments. These contenders to replace FFPE-based histology appear promising for such uses as real-time surgical guidance, margin-assessment, rapid on-site evaluation (ROSE), and possibly the generation of final diagnostic reports. This talk will describe a few of these methods, which including 2-photon and confocal microscopy, light-sheet microscopy, optical coherence tomography, and structured illumination, and will focus on microscopy with UV surface excitation (MUSE), a novel approach that demonstrates a favorable combination of speed, simplicity, robustness, and technical quality.

YAIR RIVENSON
Postdoctoral Scholar, Ozcan Nano/Bio Photonics Lab, University of California Los Angeles
Deep Learning Microscopy for Enhanced Digital Pathology
• We demonstrate that deep learning can be used to provide a significant enhancement in imaging throughput of pathology slides, by extending the depth-of-field and resolution of images acquired using a standard brightfield imaging optical microscope, without any hardware modifications.
 • The enhanced result image is inferred using a single input image.
 • This proposed deep learning approach is computationally efficient and outputs an image, corresponding to a 40x sample field-of-view in <1 second using a laptop.
 • We demonstrate the universal nature of the approach, using a model that was created with a deep neural network which was trained on a specific tissue and stain type, to enhance microscope images that were taken with different tissues, stains and magnifications.
8:20-9:00 Refreshments
8:50-9:00 Global Engage Welcome Address and Morning Chair’s Opening Remarks

9:00-9:35 KEYNOTE ADDRESS:
ANANT MADABHUSHI
F. Alex Nason Professor II, Department of Biomedical Engineering; Director, Center for Computational Imaging & Personalized Diagnostics, Case Western Reserve University
The case for hand-crafted features: Not another deep learning in pathology talk
• Handcrafted features represent feature engineering approaches which provide interpretability.
• Handcrafted features may offer advantages over deep learning approaches by being more transparent.
• Handcrafted features can enable computational pathology based companion diagnostics for precision medicine.

9:35-10:15 SPONSORED PRESENTATION:
ERIC WIRCH
Chief Technology Officer and Managing Director, Corista
Migrating algorithms beyond the development sandbox
Machine-learning algorithmic development initially occurs in tight conjunction with a single research partner and heavily reflects the protocols of that partner’s laboratory. Migrating an algorithm from being effective at a single site to a cross site environment, with differences in human factors, processing, stains, imaging and calibration, necessitates the application of additional AI & Computer Vision steps and techniques. We will discuss experiences encountered while performing this migration, including initial results and the techniques employed or being tested for overcoming these hurdles.

10:15-10:45 COMPUTATIONAL PATHOLOGY & AI
JOHN TOMASZEWSKI
SUNY Distinguished Professor, Peter A. Nickerson Professor and Chair, Department of Pathology and Anatomical Science, University at Buffalo
Topic: Traditional AI approaches to computational histopathology

GUSTAVO KUNDE ROHDE
Associate Professor, Department of Biomedical Engineering, Department of Electrical and Computer Engineering, University of Virginia
Interpretable discriminative modeling of cellular phenotypes for digital pathology
Image-based phenotypic assessment in digital pathology typically rely on parametric numerical features to describe the state of each cellular measurement. In recent years, numerous modeling

10:45-11:55 Morning Refreshments / Odd Numbered Poster Presentations / One-to-One Meetings

11:55-12:25 SPONSORED PRESENTATION:
SENIOR REPRESENTATIVE
Leica Biosystems
Title TBC

12:25-12:50 ROUNDTABLE DISCUSSIONS:
Table 1: Expanding your diagnostic capabilities with digital pathology
DOUGLAS HARTMAN
Associate Professor of Pathology & Associate Director, Pathology Informatics, University of Pittsburgh
• Telepathology opportunities
• Image analysis opportunities
• Better quantification/documentation for diagnostic purposes

YUKAKO YAGI
Director of Pathology Digital Imaging, Department of Pathology, Memorial Sloan Kettering Cancer Center; Director of Digital Imaging Laboratory, The Warren Alpert Foundation Center for Digital and Computational Pathology at MSK

12:50-1:15 SPONSORED PRESENTATION:
YUKAKO YAGI
Director of Pathology Digital Imaging, Department of Pathology, Memorial Sloan Kettering Cancer Center; Director of Digital Imaging Laboratory, The Warren Alpert Foundation Center for Digital and Computational Pathology at MSK

1:15-1:30 PANEL DISCUSSION:
Challenges & strategies for day-to-day use of digital pathology
YUKAKO YAGI
Director of Pathology Digital Imaging, Department of Pathology, Memorial Sloan Kettering Cancer Center; Director of Digital Imaging Laboratory, The Warren Alpert Foundation Center for Digital and Computational Pathology at MSK

BEATRICE KNUDSEN
Professor, Biomedical Sciences and Pathology and Laboratory Medicine, Director, Translational Pathology, Cedars Sinai Medical Center

DOUGLAS HARTMAN
Associate Professor of Pathology & Associate Director, Pathology Informatics, University of Pittsburgh

Douglas Hartman Table 1: Expanding your diagnostic capabilities with digital pathology

DOUGLAS HARTMAN
Associate Professor of Pathology & Associate Director, Pathology Informatics, University of Pittsburgh

Questions to be submitted to naomi@globalengage.co.uk
There are many different levels and areas of focus with regards to standardization of Digital Pathology. This discussion will cover all aspects of standardization for successful operation of WSI systems in clinical and research areas.

- Instrument/Industrial Standard: for interoperability
- WSI system standardization to have optimal, consistent quality and reliable images
- Establishing Operational Standard

Table 3: Novel Deep Learning Applications

RAJENDRA SINGH
Associate Professor, Pathology, Icahn School of Medicine at Mt. Sinai

Table 4: Digital Pathology in Pharma

MICHAEL SURACE
Scientist, MedImmune

The modeling framework can not only obtain predictive models of higher accuracies, but due to the invertibility of the modeling framework, allow for biologically interpretable results. Applications in cancer diagnosis using histology and cytology will be shown.

Frameworks for image-based cell phenotypes. We will describe how non-parametric methods based on the continuity equation can be used to build non-parametric end to end systems that utilize all pixel information directly in statistical modeling. We will show that the modeling framework can not only obtain predictive models of higher accuracies, but due to the invertibility of the modeling framework, allow for biologically interpretable results. Applications in cancer diagnosis using histology and cytology will be shown.
MAKING A POSTER PRESENTATION

Poster presentation sessions will take place in breaks and alongside the other breakout sessions of the conference. Your presentation will be displayed in a dedicated area, with the other accepted posters from industry and academic presenters. We also issue a poster eBook to all attendees with your full abstract in and can share your poster as a PDF after the meeting if you desire (optional). Whether looking for funding, employment opportunities or simply wanting to share your work with a like-minded and focused group, these are an excellent way to join the heart of this congress.

In order to present a poster at the congress you need to be registered as a delegate. Please note that there is limited space available and poster space is assigned on a first come first served basis (subject to checks and successful registration). We charge an admin fee of $100 to industry delegates to present, that goes towards the shared cost of providing the poster presentation area and display boards, guides etc. This fee is waived for those representing academic institutions and not for profit organisations.
Radisson Martinique on Broadway,
49 West 32nd Street, New York,
NY 10001, USA

Historic Midtown Manhattan hotel offers ideal location
From Penn Station, walk less than eight minutes to Radisson Martinique on Broadway, a Beaux-Arts hotel located squarely in the heart of Midtown Manhattan. A member of the prestigious Historic Hotels of America, the Radisson is a testament to French Renaissance elegance, rising 19 stories above the "Great White Way," which is home to a huge variety of famed Broadway shows. Our pet-friendly hotel is near top attractions, from Times Square, less than a mile away, to the Empire State Building, about half a mile away.

- Adjacent parking available
- Two restaurants
- Cocktail lounge
- Multilingual staff
- Same-day valet dry cleaning