6TH DIGITAL PATHOLOGY
& AI CONGRESS: ASIA
SEOUl, SOUTH KOREA
18-19 August 2020
www.global-engage.com

Global Engage is pleased to announce its Digital Pathology Congress will be held in Seoul for its 6th year on the 18th-19th August 2020. Following on last year’s meeting which attracted over 130 attendees, the congress will provide the opportunity to take home cutting-edge strategies, analysis technique, case study examples and methods to allow you to fully understand both the technology and accompanying informatics and the image analysis tools and utilise digital pathology to its greatest potential.

The congress will have expanded coverage on AI and computational pathology alongside the latest case studies and applications. To complement the latest scientific presentations, the conference comprises of a vibrant exhibition room full of technology providers showcasing their technologies and other solutions; networking breaks allowing interaction with your peers; poster presentation session; and incisive Q&A panel discussions. Whether you are looking to hear more about the adoption and integration of digital pathology, seeking collaborations and tools to increase workflow or uncover the latest developments in automated image analysis, the congress is one not to be missed!

Conference Synopsis

Digital Pathology – Trends, Strategy and Technology
- Emerging technologies
- Regulatory overview
- Quality assurance

Computational Pathology & Artificial Intelligence
- Approaches and scientific challenges
- Development of new tools and products
- Machine learning and AI

Clinical Implementation
- Clinical image analysis
- LIS integration

Digital Pathology Applications and Research Case Studies
- Diagnostic case studies
- Clinical studies
- Personalised targeted therapies
- Deep learning

Digital Pathology and AI in Education
- E-learning and e-training
- Virtual pathology
Co-Hosts

Platinum Sponsors

Gold Sponsor

Exhibitors

Supporter
Global Engage is delighted to confirm that we will be hosting pre-event workshops designed to give you a comprehensive experience of their technology. The full details of each workshop will become available very soon. The workshops have proved extremely popular in the past, early booking is recommended.

PRE-EVENT WORKSHOPS

FREE TO ATTEND (subject to approval)*

Pre-Conference Workshop

Sponsored by:

![Akoya Biosciences](image)

Proxima™: A New Whole Slide Spatial Biomarker Analysis Platform

Wednesday 18th March 2020

9:00am-11:30am

Dan Walker - Product Manager Tissue Imaging

Dan Eversole - Ph.D, Product Management, Tissue Analysis Software

Spatial biomarker discovery and exploration tools for the assessment of multiplex immunofluorescence tissue sections produce a wealth of data in high dimensional space. Many times, these tools are often locally based, leading to bottlenecks in the processing of large studies and difficulty in data sharing. To enable collaboration across geographical and organizational boundaries, reproducible results in the face of changing IT departments, and scalable computing power, organizations are deploying cloud-based, digital pathology workflows.

At this workshop, Akoya Biosciences, will present Proxima, its newest digital pathology platform for the management and analysis of multiplex immunofluorescent digital slides. We will discuss a strategy that will enable organizations to operate existing workflows without disruption as they transition to the cloud, while applying new tissue analysis tools for deeper understanding of spatial biology.

- Organizational management of their cloud-based user pool: assigning roles and permissions on a per-study basis
- Authenticated and secure login for access to shared imagery and analysis results
- Open-source script sharing for flexible data exploration
- Scalable, cloud-based processing for rapid whole slide analysis and mapping/visualization of complex spatial interactions between cells
CONFIRMED SPEAKERS

HAMID TIZHOOSH
Director - Kimia Lab, Vector Institute, Canada

TETSUYA TSUKAMOTO
Professor, Fujita Health University School of Medicine, Japan

JIANYU RAO
Professor, UCLA, US

DONGFENG TAN
Professor, MD Anderson Cancer Center, US

IOANNIS ROXANIS
Research Consultant, The Institute of Cancer Research, UK

JUNYA FUKUOKA
Professor, Nagasaki University, Japan

YU WEIMIAO
Head, Computational Biolmage Analysis, Agency of Science, Technology and Research, Singapore

JUN XU
Professor, Nanjing University of Information Science and Technology

MARTIN STUMPE
Senior Vice President, Tempus, US

SYLVIA ASA
Head of Pathologist, University Health Network, Canada

JEAN-CHRISTOPHE OLIVO-MARIN
Head of Team - Bio Image Analysis, Institut of Pasteur, France

CHOI JONG SOO
Project Manager, Health Information Center, Samsung Medical Center, South Korea

ALEXI BAIDOSHVILI
Director & Professor of Computational Pathology, Labpon, Netherlands

YOSEP CHONG
Professor, Catholic University of Korea, South Korea

KATRIEN GRUNBERG
Professor of Pathology, Radboudumc, Netherlands

JEREMY PARRY
Consultant Pathologist, PathWest Laboratory Medicine, Australia Honorary Research Fellow, Murdoch

University, Australia

PIFU LUO
Director of Pathology & Chief Pathologist, PI of AI+Pathology Projects, KingMed Diagnostics, China

ERIC WIRCH
Chief Technical Officer & Managing Director, Corista, US

LEWIS A. HASSELL
Director of Anatomic Pathology, University of Oklahoma Health Sciences Center

AFZAN ADAM
Senior lecturer & Head of Medical Computing Lab, Center for Artificial Intelligence Technology, Universiti Kebangsaan Malaysia

LÁSZLÓ CINKOTAI
Sales Manager, 3DHISTECH, South Korea

MIKE VALANTE
Dell US

PIFU LUO
Director of Pathology & Chief Pathologist, PI of AI+Pathology Projects, KingMed Diagnostics, China

ERIC WIRCH
Chief Technical Officer & Managing Director, Corista, US

LEWIS A. HASSELL
Director of Anatomic Pathology, University of Oklahoma Health Sciences Center

AFZAN ADAM
Senior lecturer & Head of Medical Computing Lab, Center for Artificial Intelligence Technology, Universiti Kebangsaan Malaysia

LÁSZLÓ CINKOTAI
Sales Manager, 3DHISTECH, South Korea

MIKE VALANTE
Dell US
ERIC WIRCH
Chief Technical Officer & Managing Director, Corista, US
Making Machine Learning Work for You: Leveraging Artificial Intelligence in Your Daily Work

IOANNIS ROXANIS
Research Consultant, Institute of Cancer Research, UK
Digital image analysis of novel prognostic factors in breast cancer; sowing the seeds for clinical implementation

PIFU LUO
Director of Pathology & Chief Pathologist, Pl of AI+Pathology Projects, KingMed Diagnostics, China
Tasks and Hurdles of AI-Assisted Oncopathology in China

JEAN-CHRISTOPHE OLIVO-MARIN
Head of Team - Bio Image Analysis, Institut of Pasteur, France
Icytomine: A User-Friendly Tool for Integrating Work Flows on Whole Slide Images

MARTIN STUMPE
Senior Vice President, Tempus, US
Title TBC

YOSEP CHONG
Clinical Assistant Professor, The Catholic University of Korea
Recommendations for Pathologic Practice Using Digital Pathology

JUNYA FUKUOKA
Professor, Nagasaki University, Japan
Application of Deep Learning into Routine Diagnostic Workflow: Barriers and Benefits

The research and development (R&D) of artificial intelligence (AI)-assisted pathology is seething in oncopathology that yielded many high SCI publications in the field. However, a large number of hurdles and challenges encountered in the AI+Oncopathology that has impacted progress of its R&D process in oncopathology. As the Principle investigator of many AI+Pathology projects in KingMed Diagnostic, Dr. Luo will analyze what are these hurdles, and how to face the challenges. With their experience, Dr. Luo will also bring out questions about what are the tasks of AI+Oncopathology that really need in current precision medicine, and how to implement the AI+Oncopathology products as quickly as possible to make it benefit the cancer patients in the accurate diagnosis, guiding treatment and predicting prognosis.

The research and development (R&D) of artificial intelligence (AI)-assisted pathology is seething in oncopathology that yielded many high SCI publications in the field. However, a large number of hurdles and challenges encountered in the AI+Oncopathology that has impacted progress of its R&D process in oncopathology. As the Principle investigator of many AI+Pathology projects in KingMed Diagnostic, Dr. Luo will analyze what are these hurdles, and how to face the challenges. With their experience, Dr. Luo will also bring out questions about what are the tasks of AI+Oncopathology that really need in current precision medicine, and how to implement the AI+Oncopathology products as quickly as possible to make it benefit the cancer patients in the accurate diagnosis, guiding treatment and predicting prognosis.
CONGRESS SCHEDULE
DAY 1 TUESDAY 18TH AUGUST 2020

LÁSZLÓ CINKOTAI
Sales Manager, 3DHISTECH, South Korea
Quality and Speed by 3DHISTECH
All Pannoramic digital slide scanners feature the optical system that won in the 40x image quality section at the 1st European Digital Slide Scanner Contest in 2010. The Pannoramic family is the most comprehensive product range in digital slide scanners. From affordable single-slide to high-speed 1000-slide capacity, from high-quality brightfield to versatile brightfield and fluorescence scanning in the same machine, Pannoramic scanners (with new, user-friendly software) offer a scanning solution tailored to any need - from routine clinical pathology to pharmaceutical or medical research. 3DHISTECH offers solutions to the full process - from the gross picture to the surgical report.

12:50-13:50 Networking Lunch / One-to-One Meetings / Poster Presentations

YU WEIMIAO
Head, Computational Biomage Analysis (CBA) Unit, Institute of Molecular and Cell Biology, Agency of Science, Technology and Research, Singapore
Automatic and Quantitative Analysis of Whole Slide Multiplex Immunofluorescence Images
The rapid development of the Multiplex ImmunoFluorescence (MIF) imaging technique provides us the spatial distributions and correlations of the major immune cells in the tissue, such as macrophages, T lymphocytes, and dendritic cells, etc., as well as the immune markers co-expressed by these cells in close proximity to tumour cells. Such information is previously missing in clinical studies, and it is crucial for us to understand patient outcomes based on immune response signatures. In this talk, I will review the recent development of the MIF techniques, including reagent, staining, and scanning. The challenges of data processing and interpretation will also be covered. Some preliminary results of prostate and endometrial cancer will showcase the automatic image processing and the extracted meaningful information. If time allows, I will also share some thoughts on Digital Pathology diagnosis using Artificial Intelligence and Machine learning. Our pilot study on prostate cancer diagnosis will be reviewed.

TETSUYA TSUKAMOTO
Professor, Fujita Health University School of Medicine, Japan
Automated Classification of Lung Cancer Cytologies: Comparison of Fine-Tuning Deep Convolutional Neural Networks
Accurate diagnosis of lung cancer subtypes is indispensable for appropriate treatment. We have compared 4 deep convolutional neural networks (DCNNs) for classification of lung cancer cytological images. The classification accuracies of the fine-tuned AlexNet, GoogLeNet (Inception V3), VGG16 and ResNet50 were 74.0%, 66.8%, 76.8% and 74.0%, respectively. Kappa coefficient was the highest at 0.715 between AlexNet and VGG16 and the lowest at 0.543 between Inception V3 and VGG16. Typical morphologies like tubular structures in adenocarcinoma, keratin staining in squamous cell carcinoma, and small naked granular nuclei in small cell carcinoma were tended to be correctly judged. However, poorly differentiated features were inclined to be misrecognized. We are currently evaluating concordance and correlations of the major immune cells in the tissue, such as macrophages, T lymphocytes, and dendritic cells, etc., as well as the immune markers co-expressed by these cells in close proximity to tumour cells. Such information is previously missing in clinical studies, and it is crucial for us to understand patient outcomes based on immune response signatures. In this talk, I will review the recent development of the MIF techniques, including reagent, staining, and scanning. The challenges of data processing and interpretation will also be covered. Some preliminary results of prostate and endometrial cancer will showcase the automatic image processing and the extracted meaningful information. If time allows, I will also share some thoughts on Digital Pathology diagnosis using Artificial Intelligence and Machine learning. Our pilot study on prostate cancer diagnosis will be reviewed.

JEREMY PARRY
Consultant Pathologist, PathWest Laboratory Medicine, Australia, Honorary Research Fellow, Murdoch University, Australia
Characterising follicles in lymph nodes with deep learning: Can we identify a digital signature?
The application of deep learning to digital whole slide images (WSI) of lymph nodes often focuses on the identification and classification of discrete objects such as metastatic cancer. Class labelling in this setting may take a binary approach, assigning quite different background populations of haematolymphoid cells to a single class (“not cancer”) in order to separate them from cancer deposits. Yet background changes are potentially a powerful predictor of underlying lymph node disease. This talk discusses a workflow pipeline for semi-automated annotating of lymph nodes and application of a convolutional deep neural network with a view to exploring the concept of a “digital signature”, based on distributions in the similarity of follicles. Preliminary study findings will be presented.

CHOI JONG SOO
Project Manager, Health Information Center, Samsung Medical Center, South Korea
Digital Pathology from IT perspective
I think the future of Digital Pathology (DP) is bright. With collaboration of AI, Genomics and other advanced technologies, it is possible to provide more advanced and efficiency answer of pathology diagnosis for peoples. However, the introduction of DP is somewhat different from the traditional introduction of medical devices. In other words, there are several challenges related to the adoption of DP. In this session, from the perspective of IT professionals, I try to discuss the challenges.

SYLVIA ASA
Head of Pathologist, University Health Network, Canada
Title TBC

For sponsorship and exhibition enquiries, please contact Reuben Raj at: reuben@global-engage.com or call +603-2117 5193

For sponsorship and exhibition enquiries, please contact Reuben Raj at: reuben@global-engage.com or call +603-2117 5193

6TH DIGITAL PATHOLOGY & AI CONGRESS: ASIA 2020

6:00-6:30 PM For sponsorship and exhibition enquiries, please contact Reuben Raj at: reuben@global-engage.com or call +603-2117 5193

6:30-6:45 PM SCHEDULE

7:00-7:15 PM DAY 1 TUESDAY 18TH AUGUST 2020

LÁSZLÓ CINKOTAI
Sales Manager, 3DHISTECH, South Korea
Quality and Speed by 3DHISTECH
All Pannoramic digital slide scanners feature the optical system that won in the 40x image quality section at the 1st European Digital Slide Scanner Contest in 2010. The Pannoramic family is the most comprehensive product range in digital slide scanners. From affordable single-slide to high-speed 1000-slide capacity, from high-quality brightfield to versatile brightfield and fluorescence scanning in the same machine, Pannoramic scanners (with new, user-friendly software) offer a scanning solution tailored to any need - from routine clinical pathology to pharmaceutical or medical research. 3DHISTECH offers solutions to the full process - from the gross picture to the surgical report.

12:50-13:50 Networking Lunch / One-to-One Meetings / Poster Presentations

YU WEIMIAO
Head, Computational Biomage Analysis (CBA) Unit, Institute of Molecular and Cell Biology, Agency of Science, Technology and Research, Singapore
Automatic and Quantitative Analysis of Whole Slide Multiplex Immunofluorescence Images
The rapid development of the Multiplex ImmunoFluorescence (MIF) imaging technique provides us the spatial distributions and correlations of the major immune cells in the tissue, such as macrophages, T lymphocytes, and dendritic cells, etc., as well as the immune markers co-expressed by these cells in close proximity to tumour cells. Such information is previously missing in clinical studies, and it is crucial for us to understand patient outcomes based on immune response signatures. In this talk, I will review the recent development of the MIF techniques, including reagent, staining, and scanning. The challenges of data processing and interpretation will also be covered. Some preliminary results of prostate and endometrial cancer will showcase the automatic image processing and the extracted meaningful information. If time allows, I will also share some thoughts on Digital Pathology diagnosis using Artificial Intelligence and Machine learning. Our pilot study on prostate cancer diagnosis will be reviewed.

TETSUYA TSUKAMOTO
Professor, Fujita Health University School of Medicine, Japan
Automated Classification of Lung Cancer Cytologies: Comparison of Fine-Tuning Deep Convolutional Neural Networks
Accurate diagnosis of lung cancer subtypes is indispensable for appropriate treatment. We have compared 4 deep convolutional neural networks (DCNNs) for classification of lung cancer cytological images. The classification accuracies of the fine-tuned AlexNet, GoogLeNet (Inception V3), VGG16 and ResNet50 were 74.0%, 66.8%, 76.8% and 74.0%, respectively. Kappa coefficient was the highest at 0.715 between AlexNet and VGG16 and the lowest at 0.543 between Inception V3 and VGG16. Typical morphologies like tubular structures in adenocarcinoma, keratin staining in squamous cell carcinoma, and small naked granular nuclei in small cell carcinoma were tended to be correctly judged. However, poorly differentiated features were inclined to be misrecognized. We are currently evaluating concordance and correlations of the major immune cells in the tissue, such as macrophages, T lymphocytes, and dendritic cells, etc., as well as the immune markers co-expressed by these cells in close proximity to tumour cells. Such information is previously missing in clinical studies, and it is crucial for us to understand patient outcomes based on immune response signatures. In this talk, I will review the recent development of the MIF techniques, including reagent, staining, and scanning. The challenges of data processing and interpretation will also be covered. Some preliminary results of prostate and endometrial cancer will showcase the automatic image processing and the extracted meaningful information. If time allows, I will also share some thoughts on Digital Pathology diagnosis using Artificial Intelligence and Machine learning. Our pilot study on prostate cancer diagnosis will be reviewed.

JEREMY PARRY
Consultant Pathologist, PathWest Laboratory Medicine, Australia, Honorary Research Fellow, Murdoch University, Australia
Characterising follicles in lymph nodes with deep learning: Can we identify a digital signature?
The application of deep learning to digital whole slide images (WSI) of lymph nodes often focuses on the identification and classification of discrete objects such as metastatic cancer. Class labelling in this setting may take a binary approach, assigning quite different background populations of haematolymphoid cells to a single class (“not cancer”) in order to separate them from cancer deposits. Yet background changes are potentially a powerful predictor of underlying lymph node disease. This talk discusses a workflow pipeline for semi-automated annotating of lymph nodes and application of a convolutional deep neural network with a view to exploring the concept of a “digital signature”, based on distributions in the similarity of follicles. Preliminary study findings will be presented.

CHOI JONG SOO
Project Manager, Health Information Center, Samsung Medical Center, South Korea
Digital Pathology from IT perspective
I think the future of Digital Pathology (DP) is bright. With collaboration of AI, Genomics and other advanced technologies, it is possible to provide more advanced and efficiency answer of pathology diagnosis for peoples. However, the introduction of DP is somewhat different from the traditional introduction of medical devices. In other words, there are several challenges related to the adoption of DP. In this session, from the perspective of IT professionals, I try to discuss the challenges.

SYLVIA ASA
Head of Pathologist, University Health Network, Canada
Title TBC

For sponsorship and exhibition enquiries, please contact Reuben Raj at: reuben@global-engage.com or call +603-2117 5193
LEWIS A. HASSELL
Director of Anatomic Pathology, University of Oklahoma Health Sciences Center
Deep Learning for Human Trainees in Pathology: Roles for AI and Digital Pathology

Two decades into the digital transformation of pathology, and several years post-FDA approval, the adoption curve still seems to have a painfully slow slope. Nowhere is this more evident than in applications to the training process of new pathologists where the gap between potential and actual performance remains wide. With the adjunct potential of applying AI the value proposition for digital pathology tools in education seems to be enhanced. This talk will review some of the key competencies where digital pathology is delivering on its promise, and explore other competencies where it still lags. How AI might shift this imbalance will be explored using program analysis from several US training settings.

POSTER PRESENTATIONS

MAKING A POSTER PRESENTATION

Poster presentation sessions will take place in breaks and alongside the other breakout sessions of the conference. Your presentation will be displayed in a dedicated area, with the other accepted posters from industry and academic presenters. We also issue a poster eBook to all attendees with your full abstract in and can share your poster as a PDF after the meeting if you desire (optional). Whether looking for funding, employment opportunities or simply wanting to share your work with a like-minded and focused group, these are an excellent way to join the heart of this congress.

In order to present a poster at the congress you need to be registered as a delegate. Please note that there is limited space available and poster space is assigned on a first come first served basis (subject to checks and successful registration). We charge an admin fee of $50 USD to industry delegates to present, that goes towards the shared cost of providing the poster presentation area and display boards, guides etc. This fee is waived for those representing academic institutions and not for profit organisations.
DAY 2

08:00-08:50 Registration & Refreshments

08:50-09:00 Global Engage Welcome Address and Morning Chair’s Opening Remarks

DONGFENG TAN
Professor, MD Anderson Cancer Center, USA

Digital Pathology and AI for Precision Medicine, and Their Potentials in Academic as Well as Private Settings
With improvements of whole-slide imaging and combination of artificial intelligence innovations, the field of digital pathology and its role in quality healthcare has exploded during the past years. After initial approval by the FDA for primary diagnosis three years ago, digital pathology is emerging as one of the very promising avenues of precision medicine in order to achieve better, faster and more affordable diagnosis and cancer screening. When those slides are digitized, they have the potential to be shared anywhere at any time via modern clouding module. Additionally, screened digital images could be numerically analyzed using computer algorithms. Algorithms can be used to automate the manual counting of structures, or for classifying the condition of tissue such as is used in grading tumors. With “deep learning” solution offered by the computer algorithms, this could learn human errors and eventually improve accuracy of diagnoses in a more effective way. Traditional time-consuming screening such as cytology for cervical neoplasm is to be done by emerging powerful and reliable tool, making population-based screening more accessible. Nevertheless, to fully use of digital pathology in daily practice, it has challenges and time is needed to integrate this methodology to conventional diagnosis and electronic healthcare database.

HIGH LEVEL PANEL DISCUSSION:
Establishing ROI on Digital Pathology Investment
Pathology has long been targeted as an area ripe for digitalisation and is commonly discussed as the next big opportunity in clinical IT. However, adoption to date has been slow and challenging in this region. This high-level panel discussion will discuss in-depth on the operational efficiency, the need for digitalisation and the return of investment of digital pathology.

ALEXI BAIDOVSHVILI (Moderator)
Director & Professor of Computational Pathology, Labpon, Netherlands

HAMID TIZHOOSH
Professor, Kimia Lab, University of Waterloo, Canada

MIKE VALANTE
Dell US

10:30-11:30 Morning Refreshments / One-to-One Meetings / Poster Presentations

JIANYU RAO
Diagnostic Technology Innovation, Director of Pathology, Director of International Telepathology, UCLA, David Geffen School of Medicine, USA

Digital Technology and Machine Learning in Pathology
There is a growing interest for the application of a range of digital and AI-based technologies including deep learning, neuro-network, and machine learning for pathology and cytology diagnosis. The goal of this presentation is to share the experiences of utilizing digital technology in international second opinion consultation and findings of preliminary studies involving a neuro-network and machine learning method (Zhiwei) in bone marrow aspirate smear and urine cytological analysis. We have accumulated 10 years of working experiences of international telepathology consultation between UCLA and Second Affiliate Hospital of Zhejiang University - benefits, barriers, problems, and solutions will be discussed. We will also discuss the Zhiwei system. The Zhiwei system is a fully automatic closing system with auto-focusing, auto-accusation, image standardization, cell cluster localization and segmentation, individual cell recognition and confirmation, and reporting steps. The system is developed for both bone marrow smears (mainly for the diagnosis of hematopoietic diseases) and urine (for urothelial carcinoma). This research proposes a computer-aided artificial intelligence trained imagine recognition systems that simulates a human visual inspection to automate the process of detection and identification of nucleated-cell differential cell counts in bone marrow aspirate and urine cytology. Initial validation study for bone marrow smears: 1200 subjects ranging from normal to leukemia, lymphoma, with overall accuracy of classification from 82% to 97% (see Table 1). Initial validation study for urine cytology: 50 subjects ranging from normal to HGucc, project is still ongoing. Digital and AI-based technologies may be useful in various pathological diagnostic settings.

HAMID TIZHOOSH
Professor, Kimia Lab, University of Waterloo, Canada

The Wisdom of Diagnostic Consensus: Image Search in Large Archives of Histopathology Images
Diagnostic error is embodied in inter- and intra-observer variability. Building consensus seems to be the only way to overcome this challenge in medical imaging. Using artificial intelligence, searching in archives of evidently diagnosed cases is the main platform to provide the basis for consensus. Large-scale validation using TCGA image data shows that this is possible. In this talk, the foundations of image search for recognizing tissue similarity will be discussed in a technical fashion. Diagnostic consensus via image search will be explained. Examples will be discussed.
ALEXI BAIDOSHVELI
Director & Professor of Computational Pathology, Labpon, Netherlands
Real Life Efficiency Gains using Digital and Computational Pathology: In Pathologist’s Point of View
Digital and computational pathology offer the promises of faster and more accurate diagnosis, with artificial intelligence and image analysis as powerful aids to pathologists in specimen review and diagnosis.
The first step to begin to realize the practical application and benefits of algorithms is to successfully digitize the primary diagnostic workflow. At the Laboratory of Pathology East Netherlands (LabPON), we made the decision to fully digitize pathology operations in 2015, which after successful implementation provided measurable efficiency gains. We are now beginning early explorations on the implementation of deep learning computational pathology algorithms, to gain an outlook into how algorithms can provide additional efficiency gains and ultimately aid pathologists. In our initial investigation we report that using an early algorithm trained can provide efficiency gains. While these initial reports from LabPON and other institutions are promising, we show our expectations how the integration of algorithm implementation into an efficient diagnostic workflow should be a key to make algorithms a practical, convenient and ultimately helpful tool for pathologists.

JUN XU
Professor, Nanjing University of Information Science and Technology
Computational Pathology for Precision Medicine

AFZAN ADAM
Senior lecturer & Head of Medical Computing Lab, Center for Artificial Intelligence Technology, Universiti Kebangsaan Malaysia
Learning from the developed countries: How Malaysia is adopting the virtual pathology
Despite the existing of virtual scanner technologies that enables AI diagnostics and image analysis in the developed countries, hospitals in Malaysia are still practicing the standard operating procedures in examining slides and uses virtual slide only for quality assurance programme (internal and external).
- What is stopping the pathologist to embrace the VP technology?
- The role of Digital Pathology Society of Malaysia: nurturing VP in the daily SOP and advancing the diagnostics algorithms.

KATRIEN GRUNBERG
Professor of Pathology, Radboudmc, Netherlands
Brave New World
- 3 key developments in pathology
- Role of digital pathology in bridging the gap in tumor boards
- Role of digital pathology in networks and specialisation
- Pathology Image Exchange in NL
- Development and application of AI in pathology: the Nijmegen experience

12:50-13:50 Networking Lunch / One-to-One Meetings / Poster Presentations

ALEXI BAIDOSHVELI
Real Life Efficiency Gains using Digital and Computational Pathology: In Pathologist’s Point of View

JUN XU
Computational Pathology for Precision Medicine

AFZAN ADAM
Learning from the developed countries: How Malaysia is adopting the virtual pathology

KATRIEN GRUNBERG
Brave New World

15:35 Conference Close
DON’T DELAY, BOOK YOUR PLACE TODAY!
Places are limited and are based on a first come, first served basis so to avoid disappointment contact us today to reserve your place at Global Engage’s 6th Digital Pathology & AI Congress: Asia 2020.

PHONE BOOKING
+603 2117 5193
Our conference team will make all the necessary arrangements.

ONLINE BOOKING
Visit the website to book your place with credit card payment or an invoice request.

THE CONGRESS PACKAGE INCLUDES:
- All Conference Sessions
- Lunches and Refreshments
- Access to Exhibition Room
- Networking Drinks Reception
- Conference Workbook
- E-Document Pack

FREE NEWSLETTER
For updates on the 6th Digital Pathology & AI Congress: Asia 2020, plus free resources and reports, as and when our speakers authorise their release dates, check for updates at:

SPONSORSHIP AND EXHIBITION OPPORTUNITIES AVAILABLE
For more details contact Reuben Raj: reuben@global-engage.com Tel: +603 2117 5193